
CSE351, Spring 2019L06:  Floating Point I

Floating Point I
CSE 351 Spring 2019

Instructor: Teaching Assistants:

Ruth Anderson Gavin Cai Jack Eggleston John Feltrup
Britt Henderson Richard Jiang Jack Skalitzky
Sophie Tian Connie Wang Sam Wolfson
Casey Xing Chin Yeoh

http://xkcd.com/571/

http://xkcd.com/571/


CSE351, Spring 2019L06:  Floating Point I

Administrivia

 Lab 1a due Monday 4/15 at 11:59 pm
 Submit pointer.c and lab1Areflect.txt

 Lab 1b due Monday (4/22)
 Submit bits.c and lab1Breflect.txt

 Homework 2 coming soon, due Wednesday (4/24)

 On Integers, Floating Point, and x86-64

2



CSE351, Spring 2019L06:  Floating Point I

Unsigned Multiplication in C

 Standard Multiplication Function

 Ignores high order 𝑤 bits

 Implements Modular Arithmetic

 UMultw(u , v)= u · v mod 2w

3

• • •

• • •

u

v
*

• • •u · v

• • •

True Product:
𝟐𝒘 bits

Operands: 
𝒘 bits

Discard 𝑤 bits: 
𝒘 bits

UMultw(u , v)

• • •



CSE351, Spring 2019L06:  Floating Point I

Multiplication with shift and add

 Operation  u<<k gives  u*2k

 Both signed and unsigned

 Examples:
 u<<3 == u * 8

 u<<5 - u<<3 == u * 24

 Most machines shift and add faster than multiply
• Compiler generates this code automatically

4

• • •u

2k
*

u · 2kTrue Product:  𝒘+ 𝒌 bits

Operands:  𝒘 bits

Discard 𝑘 bits: 𝒘 bits UMultw(u , 2k)

0 0 1 0 0 0••• •••
k

• • • 0 0 0•••

TMultw(u , 2k)
0 0 0••••••



CSE351, Spring 2019L06:  Floating Point I

Number Representation Revisited

 We know how to represent:

 Signed and Unsigned Integers

 Characters (ASCII)

 Addresses

 How do we encode the following:

 Real numbers (e.g. 3.14159)

 Very large numbers (e.g. 6.02×1023)

 Very small numbers (e.g. 6.626×10-34)

 Special numbers (e.g. ∞, NaN)

5

Floating
Point



CSE351, Spring 2019L06:  Floating Point I

Floating Point Topics

 Fractional binary numbers

 IEEE floating-point standard

 Floating-point operations and rounding

 Floating-point in C

 There are many more details that we won’t cover

 It’s a 58-page standard…
6



CSE351, Spring 2019L06:  Floating Point I

Floating Point Summary

 Floats also suffer from the fixed number of bits 
available to represent them 
 Can get overflow/underflow, just like ints

 “Gaps” produced in representable numbers means we can 
lose precision, unlike ints
• Some “simple fractions” have no exact representation (e.g. 0.2)

• “Every operation gets a slightly wrong result”

 Floating point arithmetic not associative or 
distributive
 Mathematically equivalent ways of writing an expression 

may compute different results

 Never test floating point values for equality!

 Careful when converting between ints and floats!
7



CSE351, Spring 2019L06:  Floating Point I

Representation of Fractions

 “Binary Point,” like decimal point, signifies boundary 
between integer and fractional parts:

Example 6-bit
representation:

 Example: 10.10102 = 1×21 + 1×2-1 + 1×2-3 = 2.62510

8

xx.yyyy

21
20 2-1

2-2 2-3 2-4



CSE351, Spring 2019L06:  Floating Point I

Representation of Fractions

 “Binary Point,” like decimal point, signifies boundary 
between integer and fractional parts:

Example 6-bit
representation:

 In this 6-bit representation:
 What is the encoding and value of 

the smallest (most negative) number?

 What is the encoding and value of 
the largest (most positive) number?

 What is the smallest number greater 
than 2 that we can represent?

9

xx.yyyy

21
20 2-1

2-2 2-3 2-4



CSE351, Spring 2019L06:  Floating Point I

• • •

b–1.

Fractional Binary Numbers

 Representation
 Bits to right of “binary point” represent fractional powers of 2

 Represents rational number:

bi bi–1 b2 b1 b0 b–2 b–3 b–j• • •• • •

1

2

4

2i–1

2i

• • •

1/2

1/4

1/8

2–j

bk 2
k

k j

i



10



CSE351, Spring 2019L06:  Floating Point I

Fractional Binary Numbers

 Value Representation

 5 and 3/4

 2 and 7/8

 47/64

 Observations

 Shift left = multiply by power of 2

 Shift right = divide by power of 2

 Numbers of the form 0.111111…2 are just below 1.0

 1/2 + 1/4 + 1/8 + … + 1/2i + … ➙ 1.0

 Use notation 1.0 – ε

101.112

10.1112

0.1011112

11



CSE351, Spring 2019L06:  Floating Point I

Limits of Representation

 Limitations:

 Even given an arbitrary number of bits, can only exactly
represent numbers of the form x * 2y (y can be negative)

 Other rational numbers have repeating bit representations

Value: Binary Representation:
• 1/3 = 0.333333…10 = 0.01010101[01]…2

• 1/5   = 0.001100110011[0011 ]…2

• 1/10 =   0.0001100110011[0011 ]…2

12



CSE351, Spring 2019L06:  Floating Point I

Fixed Point Representation

 Implied binary point. Two example schemes:

#1: the binary point is between bits 2 and 3
b7 b6 b5 b4 b3 [.] b2 b1 b0

#2: the binary point is between bits 4 and 5
b7 b6 b5 [.] b4 b3 b2 b1 b0

 Wherever we put the binary point, with fixed point 
representations there is a trade off between the 
amount of range and precision we have

 Fixed point = fixed range and fixed precision
 range: difference between largest and smallest numbers possible

 precision: smallest possible difference between any two numbers

 Hard to pick how much you need of each!
13



CSE351, Spring 2019L06:  Floating Point I

Floating Point Representation 

 Analogous to scientific notation

 In Decimal:
• Not 12000000, but 1.2 x 107 In C: 1.2e7

• Not 0.0000012, but 1.2 x 10-6 In C: 1.2e-6

 In Binary:
• Not 11000.000, but 1.1 x 24

• Not 0.000101, but 1.01 x 2-4

 We have to divvy up the bits we have (e.g., 32) among:

 the sign (1 bit)

 the mantissa (significand)

 the exponent

14



CSE351, Spring 2019L06:  Floating Point I

Scientific Notation (Decimal)

 Normalized form: exactly one digit (non-zero) to left 
of decimal point

 Alternatives to representing 1/1,000,000,000
 Normalized: 1.0×10-9

 Not normalized: 0.1×10-8,10.0×10-10

15

6.0210 × 1023

radix (base)decimal point

exponentmantissa



CSE351, Spring 2019L06:  Floating Point I

Scientific Notation (Binary)

 Computer arithmetic that supports this called floating 
point due to the “floating” of the binary point

 Declare such variable in C as float (or double)

16

1.012 × 2-1

radix (base)binary point

exponentmantissa



CSE351, Spring 2019L06:  Floating Point I

Scientific Notation Translation

 Convert from scientific notation to binary point
 Perform the multiplication by shifting the decimal until the exponent 

disappears

• Example:  1.0112×24 = 101102 = 2210

• Example:  1.0112×2-2 = 0.010112 = 0.3437510

 Convert from binary point to normalized scientific notation
 Distribute out exponents until binary point is to the right of a single digit

• Example:  1101.0012 = 1.1010012×23

 Practice:  Convert 11.37510 to binary scientific notation

17



CSE351, Spring 2019L06:  Floating Point I

Floating Point Topics

 Fractional binary numbers

 IEEE floating-point standard

 Floating-point operations and rounding

 Floating-point in C

 There are many more details that we won’t cover

 It’s a 58-page standard…
18



CSE351, Spring 2019L06:  Floating Point I

IEEE Floating Point

 IEEE 754 
 Established in 1985 as uniform standard for floating point arithmetic

 Main idea: make numerically sensitive programs portable

 Specifies two things: representation and result of floating operations

 Now supported by all major CPUs

 Driven by numerical concerns
 Scientists/numerical analysts want them to be as real as possible

 Engineers want them to be easy to implement and fast

 In the end:

• Scientists mostly won out

• Nice standards for rounding, overflow, underflow, but...

• Hard to make fast in hardware

• Float operations can be an order of magnitude slower than integer ops

19



CSE351, Spring 2019L06:  Floating Point I

Floating Point Encoding

 Use normalized, base 2 scientific notation:

 Value: ±1 × Mantissa × 2Exponent

 Bit Fields: (-1)S × 1.M × 2(E–bias)

 Representation Scheme:

 Sign bit (0 is positive, 1 is negative)

 Mantissa (a.k.a. significand) is the fractional part of the 
number in normalized form and encoded in bit vector M

 Exponent weights the value by a (possibly negative) power 
of 2 and encoded in the bit vector E

20

S E M
31 30 23 22 0

1 bit 8 bits 23 bits



CSE351, Spring 2019L06:  Floating Point I

The Exponent Field

 Use biased notation

 Read exponent as unsigned, but with bias of 2w-1-1 = 127

 Representable exponents roughly ½ positive and ½ negative

 Exponent 0 (Exp = 0) is represented as E = 0b 0111 1111

 Why biased?

 Makes floating point arithmetic easier

 Makes somewhat compatible with two’s complement

 Practice:  To encode in biased notation, add the bias then 
encode in unsigned:
 Exp = 1 → → E = 0b 

 Exp = 127 → → E = 0b 

 Exp = -63 → → E = 0b 
21



CSE351, Spring 2019L06:  Floating Point I

The Mantissa (Fraction) Field

 Note the implicit 1 in front of the M bit vector

 Example:  0b 0011 1111 1100 0000 0000 0000 0000 0000
is read as  1.12 = 1.510, not 0.12 = 0.510

 Gives us an extra bit of precision

 Mantissa “limits”

 Low values near M = 0b0…0 are close to 2Exp

 High values near M = 0b1…1 are close to 2Exp+1

22

(-1)S x (1 . M) x 2(E–bias)

S E M
31 30 23 22 0

1 bit 8 bits 23 bits



CSE351, Spring 2019L06:  Floating Point I

Peer Instruction Question

 What is the correct value encoded by the following 
floating point number?

 0b  0  10000000  11000000000000000000000

 Vote at http://pollev.com/rea

A. + 0.75

B. + 1.5

C. + 2.75

D. + 3.5

E. We’re lost…
23

http://pollev.com/rea


CSE351, Spring 2019L06:  Floating Point I

Precision and Accuracy

 Precision is a count of the number of bits in a 
computer word used to represent a value

 Capacity for accuracy

 Accuracy is a measure of the difference between the 
actual value of a number and its computer 
representation

 High precision permits high accuracy but doesn’t guarantee 
it.  It is possible to have high precision but low accuracy.

 Example: float pi = 3.14;

• pi will be represented using all 24 bits of the mantissa (highly 
precise), but is only an approximation (not accurate)

24



CSE351, Spring 2019L06:  Floating Point I

Need Greater Precision?

 Double Precision (vs. Single Precision) in 64 bits

 C variable declared as double

 Exponent bias is now 210–1 = 1023

 Advantages: greater precision (larger mantissa), 
greater range (larger exponent)

 Disadvantages: more bits used,
slower to manipulate

25

S E (11) M (20 of 52)
63 62 52 51 32

M (32 of 52)
31 0



CSE351, Spring 2019L06:  Floating Point I

Representing Very Small Numbers

 But wait… what happened to zero?

 Using standard encoding 0x00000000 = 

 Special case: E and M all zeros = 0
• Two zeros!  But at least 0x00000000 = 0 like integers

 New numbers closest to 0:

 a = 1.0…02×2-126 = 2-126

 b = 1.0…012×2-126 = 2-126 + 2-149

 Normalization and implicit 1 are to blame

 Special case: E = 0, M ≠ 0 are denormalized numbers

26

0
+∞-∞

Gaps!

a

b



CSE351, Spring 2019L06:  Floating Point I

Denorm Numbers

 Denormalized numbers

 No leading 1

 Uses implicit exponent of –126 even though E = 0x00

 Denormalized numbers close the gap between zero 
and the smallest normalized number

 Smallest norm: ± 1.0…0two×2-126 = ± 2-126

 Smallest denorm: ± 0.0…01two×2-126 = ± 2-149

• There is still a gap between zero and the smallest denormalized
number

27

So much
closer to 0

This is extra 
(non-testable) 

material



CSE351, Spring 2019L06:  Floating Point I

Other Special Cases

 E = 0xFF, M = 0:  ± ∞

 e.g. division by 0

 Still work in comparisons!

 E = 0xFF, M ≠ 0:  Not a Number (NaN)

 e.g. square root of negative number, 0/0, ∞–∞

 NaN propagates through computations

 Value of M can be useful in debugging

 New largest value (besides ∞)?

 E = 0xFF has now been taken!

 E = 0xFE has largest:  1.1…12×2127 = 2128 – 2104

28



CSE351, Spring 2019L06:  Floating Point I

Floating Point Encoding Summary

E M Meaning

0x00 0 ± 0

0x00 non-zero ± denorm num

0x01 – 0xFE anything ± norm num

0xFF 0 ± ∞

0xFF non-zero NaN

29



CSE351, Spring 2019L06:  Floating Point I

Summary

 Floating point approximates real numbers:

 Handles large numbers, small numbers, special numbers

 Exponent in biased notation (bias = 2w-1–1)
• Outside of representable exponents is overflow and underflow

 Mantissa approximates fractional portion of binary point
• Implicit leading 1 (normalized) except in special cases

• Exceeding length causes rounding

30

S E (8) M (23)
31 30 23 22 0

E M Meaning
0x00 0 ± 0
0x00 non-zero ± denorm num

0x01 – 0xFE anything ± norm num
0xFF 0 ± ∞
0xFF non-zero NaN



CSE351, Spring 2019L06:  Floating Point I

An example that applies the IEEE Floating Point 
concepts to a smaller (8-bit) representation scheme.  
These slides expand on material covered today, so 
while you don’t need to read these, the information is 
“fair game.”

31



CSE351, Spring 2019L06:  Floating Point I

Tiny Floating Point Example

 8-bit Floating Point Representation

 The sign bit is in the most significant bit (MSB)

 The next four bits are the exponent, with a bias of 24-1–1 = 7

 The last three bits are the mantissa

 Same general form as IEEE Format

 Normalized binary scientific point notation

 Similar special cases for 0, denormalized numbers, NaN, ∞

32

S E M

1 4 3



CSE351, Spring 2019L06:  Floating Point I

Dynamic Range (Positive Only)

33

S E M Exp Value

0 0000 000 -6 0

0 0000 001 -6 1/8*1/64 = 1/512

0 0000 010 -6 2/8*1/64 = 2/512

…

0 0000 110 -6 6/8*1/64 = 6/512

0 0000 111 -6 7/8*1/64 = 7/512

0 0001 000 -6 8/8*1/64 = 8/512

0 0001 001  -6 9/8*1/64 = 9/512

…

0 0110 110 -1 14/8*1/2 = 14/16

0 0110 111 -1 15/8*1/2 = 15/16

0 0111 000 0 8/8*1    = 1

0 0111 001 0 9/8*1    = 9/8

0 0111 010 0 10/8*1   = 10/8

…

0 1110 110 7 14/8*128 = 224

0 1110 111 7 15/8*128 = 240

0 1111 000 n/a inf

closest to zero

largest denorm
smallest norm

closest to 1 below

closest to 1 above

largest norm

Denormalized
numbers

Normalized
numbers



CSE351, Spring 2019L06:  Floating Point I

Special Properties of Encoding

 Floating point zero (0+) exactly the same bits as integer zero
 All bits = 0

 Can (Almost) Use Unsigned Integer Comparison
 Must first compare sign bits

 Must consider 0- = 0+ = 0

 NaNs problematic

• Will be greater than any other values

• What should comparison yield?

 Otherwise OK

• Denorm vs. normalized

• Normalized vs. infinity

34


