Instructor:
Ruth Anderson

YA UNIVERSITY of WASHINGTON

LO6: Floating Point |

Floating Point |

CSE 351 Spring 2019

Teaching Assistants:
Gavin Cai

Britt Henderson
Sophie Tian
Casey Xing

Jack Eggleston

Richard Jiang
Connie Wang
Chin Yeoh

CSE351, Spring 2019

John Feltrup
Jack Skalitzky
Sam Wolfson

Jooa 2.0

o

-

1, 306... 1,307...

e
e

=

... 32,767...-32,768...

275

.= 32,767...-32,766 ...

2B

=5

http://xkcd.com/571/

http://xkcd.com/571/

YA UNIVERSITY of WASHINGTON L06: Floating Point |

Administrivia

+» Lab 1a due Monday 4/15 at 11:59 pm
" Submitpointer.cand lablAreflect.txt

+» Lab 1b due Monday (4/22)
" Submitbits.cand lablBreflect. txt

+» Homework 2 coming soon, due Wednesday (4/24)
" On Integers, Floating Point, and x86-64

YA UNIVERSITY of WASHINGTON L06: Floating Point | CSE351, Spring 2019

Unsigned Multiplication in C

u
Operands: x
w bits V
True Product:
2w bits
Discard w bits: UMult, (u , v)
w bits

+» Standard Multiplication Function
= |gnores high order w bits

+ Implements Modular Arithmetic

= UMult,(u, v)=u-v mod 2%

YA UNIVERSITY of WASHINGTON L06: Floating Point |

Multiplication with shift and add

+» Operation u<<k gives u*2k

" Both signed and unsigned

CSE351, Spring 2019

Operands: w bits) k .

* 2k _O eoo OI 1 I O (XX mg
True Product: w + k bits u - 2k oo 0] e [0]O0]
Discard k bits: w bits UMult, (u, 2%) [eoe 0 e« [0]O]

TMult, (u , 2F)
+» Examples:
" <<3 == u * 8
U< - u<kk3 == u * 24

" Most machines shift and add faster than multiply

- Compiler generates this code automatically

CSE351, Spring 2019

YA UNIVERSITY of WASHINGTON L06: Floating Point |

Number Representation Revisited

+» We know how to represent:
= Signed and Unsigned Integers
= Characters (ASCII)
= Addresses

<+ How do we encode the following:
= Real numbers (e.g. 3.14159)
= Very large numbers (e.g. 6.02x107%3)
= Very small numbers (e.g. 6.626x10734)
= Special numbers (e.g. ==, NaN)

S—

Floating
Point

WA UNIVERSITY of WASHINGTON L06: Floating Point | CSE351, Spring 2019

Floating Point Topics

» Fractional binary numbers

» |EEE floating-point standard

» Floating-point operations and rounding
» Floating-pointin C

+» There are many more details that we won’t cover
" |t's a 58-page standard...

YA UNIVERSITY of WASHINGTON L06: Floating Point | CSE351, Spring 2019

Floating Point Summary

+ Floats also suffer from the fixed number of bits
available to represent them
= Can get overflow/underflow, just like ints

= “Gaps” produced in representable numbers means we can
lose precision, unlike ints
- Some “simple fractions” have no exact representation (e.g. 0.2)
- “Every operation gets a slightly wrong result”

+» Floating point arithmetic not associative or
distributive

" Mathematically equivalent ways of writing an expression
may compute different results

+» Never test floating point values for equality!
+» Careful when converting between ints and floats!

YA UNIVERSITY of WASHINGTON L06: Floating Point | CSE351, Spring 2019

Representation of Fractions

+» “Binary Point,” like decimal point, signifies boundary
between integer and fractional parts:

Example 6-bit /X}(\;V{ly\\

representation: 20 91 52 93

» Example: 10.1010, = 1x21 + 1x21 + 1x23 =2.625,,

YA UNIVERSITY of WASHINGTON L06: Floating Point | CSE351, Spring 2019

Representation of Fractions

» “Binary Point,” like decimal point, signifies boundary
between integer and fractional parts:

Example 6-bit /X}(\;V{’y\\

representation: 20 91 52 93

In this 6-bit representation:

" What is the encoding and value of
the smallest (most negative) number?

" What is the encoding and value of
the largest (most positive) number?

" What is the smallest number greater
than 2 that we can represent?

YA UNIVERSITY of WASHINGTON L06: Floating Point | CSE351, Spring 2019

Fractional Binary Numbers

21
21’—1

+ Representation

= Bits to right of “binary point” represent fractional powers of 2
= Represents rational number: ‘
P > b2t
k=—j

10

YA UNIVERSITY of WASHINGTON L06: Floating Point | CSE351, Spring 2019

Fractional Binary Numbers

+» Value Representation
= 5and 3/4 101.11,
= 2and 7/8 10.111,
= 47/64 0.101111,

+~ Observations
= Shift left = multiply by power of 2
= Shift right = divide by power of 2
= Numbers of the form 0.111111..., are just below 1.0

= 1/2+1/4+1/8+...+41/2'+...— 1.0
= Use notation 1.0 —¢

11

YA UNIVERSITY of WASHINGTON L06: Floating Point |

CSE351, Spring 2019

Limits of Representation

<« Limitations:

= Even given an arbitrary number of bits, can only exactly
represent numbers of the form x * 2Y (y can be negative)

= Other rational numbers have repeating bit representations

Value: Binary Representation:
- 1/3 =0.333333...,= 0.01010101[01]...,
- 1/5 = 0.001100110011[0011]...,

- 1/10 = 0.0001100110011[0011]...,

12

YA UNIVERSITY of WASHINGTON L06: Floating Point |

Fixed Point Representation

+» Implied binary point. Two example schemes:
#1: the binary point is between bits 2 and 3
b, b beb, by [.1b, b, by
#2: the binary point is between bits 4 and 5
b, b b [.] b, by b, b, b,
+» Wherever we put the binary point, with fixed point
representations there is a trade off between the
amount of range and precision we have

+ Fixed point = fixed range and fixed precision
" range: difference between largest and smallest numbers possible

= precision: smallest possible difference between any two numbers

% Hard to pick how much you need of each!

CSE351, Spring 2019

13

YA UNIVERSITY of WASHINGTON L06: Floating Point | CSE351, Spring 2019

Floating Point Representation

+» Analogous to scientific notation

" |n Decimal:
- Not 12000000, but 1.2 x 10/ In C: 1.2e7
- Not 0.0000012, but 1.2 x 10° In C: 1.2e-6

" |n Binary:

- Not 11000.000, but 1.1 x 24
- Not 0.000101, but 1.01 x 24

+» We have to divvy up the bits we have (e.g., 32) among:
= the sign (1 bit)
= the mantissa (significand)
"= the exponent

14

YA UNIVERSITY of WASHINGTON L06: Floating Point | CSE351, Spring 2019

Scientific Notation (Decimal)

mantissa exponent
6i0210 x 1023
decimal point radix (base)

+» Normalized form: exactly one digit (non-zero) to left
of decimal point

+ Alternatives to representing 1/1,000,000,000
= Normalized: 1.0x10°
= Not normalized: 0.1x10%,10.0x10°10

15

YA UNIVERSITY of WASHINGTON L06: Floating Point | CSE351, Spring 2019

Scientific Notation (Binary)

mantissa exponent
11012 x 21
binary point radix (base)

+» Computer arithmetic that supports this called floating
point due to the “floating” of the binary point

= Declare such variable in Cas f1loat (or double)

16

YA UNIVERSITY of WASHINGTON L06: Floating Point | CSE351, Spring 2019

Scientific Notation Translation

+~ Convert from scientific notation to binary point

= Perform the multiplication by shifting the decimal until the exponent
disappears

- Example: 1.011,%x24=10110, = 22,,
. Example: 1.011,x22=0.01011, = 0.34375,,

+» Convert from binary point to normalized scientific notation

= Distribute out exponents until binary point is to the right of a single digit
- Example: 1101.001, = 1.101001,%x23

+ Practice: Convert 11.375,, to binary scientific notation

17

YA UNIVERSITY of WASHINGTON L06: Floating Point | CSE351, Spring 2019

Floating Point Topics

% Fractional binary numbers

+ |EEE floating-point standard

+ Floating-point operations and rounding
% Floating-point in C

+» There are many more details that we won’t cover
" |t's a 58-page standard...

18

YA UNIVERSITY of WASHINGTON L06: Floating Point | CSE351, Spring 2019

IEEE Floating Point

IEEE 754

= Established in 1985 as uniform standard for floating point arithmetic
" Main idea: make numerically sensitive programs portable

= Specifies two things: representation and result of floating operations
= Now supported by all major CPUs

Driven by numerical concerns

= Scientists/numerical analysts want them to be as real as possible
= Engineers want them to be easy to implement and fast
" |nthe end:

- Scientists mostly won out

- Nice standards for rounding, overflow, underflow, but...
Hard to make fast in hardware

- Float operations can be an order of magnitude slower than integer ops

19

YA UNIVERSITY of WASHINGTON L06: Floating Point |

CSE351, Spring 2019

Floating Point Encoding

+» Use normalized, base 2 scientific notation:
= Value: +1 x Mantissa x 2Fxponent
= Bjt Fields: (-1)° x 1.M x 2(E-bias)

+» Representation Scheme:
= Sign bit (O is positive, 1 is negative)

= Mantissa (a.k.a. significand) is the fractional part of the
number in normalized form and encoded in bit vector M

= Exponent weights the value by a (possibly negative) power
of 2 and encoded in the bit vector E
31 30 23 22
& 1 v]

1 bit 8 bits 23 bits

20

YA UNIVERSITY of WASHINGTON L06: Floating Point | CSE351, Spring 2019

The Exponent Field

+~ Use biased notation
= Read exponent as unsigned, but with bias of 2W-1-1 =127
= Representable exponents roughly % positive and % negative
= Exponent O (Exp =0) is represented as E=0b 0111 1111

+» Why biased?
" Makes floating point arithmetic easier
" Makes somewhat compatible with two’s complement

» Practice: To encode in biased notation, add the bias then
encode in unsighed:
" Exp=1 - - E=0b
" Exp=127 - — E=0b
" Exp=-63 — — E=0b

21

YA UNIVERSITY of WASHINGTON L06: Floating Point | CSE351, Spring 2019

The Mantissa (Fraction) Field

31 30 23 22
= 1 v]
1 bit 8 bits 23 bits

(-1)° x (1 . M) x 2(E-bias)

+ Note the implicit 1'in front of the M bit vector

= Example: Ob 0011 1111 1100 0000 0000 0000 0000 0000
isreadas 1.1,=1.5,,, not 0.1,=0.5;,

" Gives us an extra bit of precision

« Mantissa “limits”
= | ow values near M = 0b0...0 are close to 25
® High values near M = 0b1...1 are close to 25+!

22

YA UNIVERSITY of WASHINGTON L06: Floating Point | CSE351, Spring 2019

Peer Instruction Question

+» What is the correct value encoded by the following
floating point number?

= Ob O 10000000 11000000000000000000000

= \/ote at http://pollev.com/rea

+1.5

+2.75

+ 3.5

We're lost...

m O O W >

23

http://pollev.com/rea

YA UNIVERSITY of WASHINGTON L06: Floating Point | CSE351, Spring 2019

Precision and Accuracy

+ Precision is a count of the number of bits in a
computer word used to represent a value
= Capacity for accuracy

% Accuracy is a measure of the difference between the
actual value of a number and its computer
representation

" High precision permits high accuracy but doesn’t guarantee
it. It is possible to have high precision but low accuracy.

" Example: float pi = 3.14;

- pi will be represented using all 24 bits of the mantissa (highly
precise), but is only an approximation (not accurate)

24

YA UNIVERSITY of WASHINGTON L06: Floating Point | CSE351, Spring 2019

Need Greater Precision?

+ Double Precision (vs. Single Precision) in 64 bits

63 62 52 51 2
;T ey | M (20 of 52) L|—>

31
-F M (32 of 52) Q\

= Cvariable declared as double
= Exponent bias is now 29-1 = 1023

= Advantages: greater precision (larger mantissa),
greater range (larger exponent)

*= Disadvantages: more bits used,
slower to manipulate

25

YA UNIVERSITY of WASHINGTON L06: Floating Point |

Representing Very Small Numbers

4

L)

» But wait... what happened to zero?

= Using standard encoding 0x00000000 =

= Special case: Eand M all zeros =0
- Two zeros! But at least 0x00000000 = 0 like integers

+ New numbers closest to O: Gaps! ?
" 3=1.0..0,x2126 = 2126 -c0 i
" b= 1.0...012X2’126 = 2-126 4 D-149 0 a

®" Normalization and implicit 1 are to blame
= Special case: E =0, M # 0 are denormalized numbers

CSE351, Spring 2019

26

YA UNIVERSITY of WASHINGTON L06: Floating Point | CSE351, Spring 2019

This is extra

Denorm Numbers (non-testable)

material

+» Denormalized numbers
"= Noleading 1
= Uses implicit exponent of =126 even though E = 0x00

+» Denormalized numbers close the gap between zero
and the smallest normalized number -
" Smallest norm: £ 1.0...0,,,,x271° = £ 27126~ (5sert0 0
" Smallest denorm: + 0.0...01,,,,x271%° = + 27149

- There is still a gap between zero and the smallest denormalized
number

27

YA UNIVERSITY of WASHINGTON L06: Floating Point | CSE351, Spring 2019

Other Special Cases

« E=0xFF, M =0: oo
= e.g. division by O
= Still work in comparisons!
+» E=0xFF, M #0: Not a Number (NaN)
" e.g. square root of negative number, 0/0, co—oco
= NaN propagates through computations

" Value of M can be useful in debugging

+» New largest value (besides o=)?

" E =0xFF has now been taken!
" E = OxFE has largest: 1.1...1,x2127 = 2128 2104

28

YA UNIVERSITY of WASHINGTON L06: Floating Point | CSE351, Spring 2019

Floating Point Encoding Summary

E M Meaning
0x00 0 +0
0x00 non-zero + denorm num
0x01 — OxFE anything + norm num
OxFF 0 t oo
OxFF non-zero NaN

29

YA UNIVERSITY of WASHINGTON

Summary

LO6: Floating Point |

+» Floating point approximates real numbers:

31 30

23 22

CSE351, Spring 2019

E (8)

M (23)

®" Handles large numbers, small numbers, special numbers
= Exponent in biased notation (bias = 2%-1-1)

- Outside of representable exponents is overflow and underflow

" Mantissa approximates fractional portion of binary point

- Implicit leading 1 (normalized) except in special cases
- Exceeding length causes rounding

E M Meaning
0x00 0 +0
0x00 non-zero + denorm num
Ox01 — OxFE anything + horm num
OxFF 0 * oo
OxFF non-zero NaN

30

WA UNIVERSITY of WASHINGTON LO6: Floating Point | CSE351, Spring 2019

BONUS SLIDES

An example that applies the IEEE Floating Point
concepts to a smaller (8-bit) representation scheme.
These slides expand on material covered today, so
while you don’t need to read these, the information is
“fair game.”

31

YA UNIVERSITY of WASHINGTON L06: Floating Point | CSE351, Spring 2019

Tiny Floating Point Example

S E M
1 4 3

+ 8-bit Floating Point Representation
"= The sign bit is in the most significant bit (MSB)
" The next four bits are the exponent, with a bias of 241-1 =7
= The last three bits are the mantissa

+» Same general form as IEEE Format
®= Normalized binary scientific point notation
= Similar special cases for 0, denormalized numbers, NaN, oo

32

YA UNIVERSITY of WASHINGTON

LO6: Floating Point |

Dynamic Range (Positive Only)

Denormalized

numbers

Normalized
numbers

S

O OO O oOo: OO o Oo:

O O

E M

0000 000
0000 001
0000 010

0000 110
0000 111
0001 000
0001 001

0110 110
0110 111
0111 000
0111 001
0111 010

1110 110
1110 111
1111 000

n/a

Value

0

1/8*1/64 =
2/8*1/64 =

6/8*1/64 =
7/8*1/64 =
8/8*1/64 =
9/8*1/64 =

14/8*1/2 =
15/8*1/2 =

8/8*1
9/8*1
10/8*1

14/8*%128 =
15/8*128 =

inf

1/512
2/512

6/512
7/512
8/512
9/512

14/16
15/16

= 9/8
= 10/8

224
240

CSE351, Spring 2019

closest to zero

largest denorm
smallest norm

closest to 1 below

closest to 1 above

largest norm

33

YA UNIVERSITY of WASHINGTON L06: Floating Point | CSE351, Spring 2019

Special Properties of Encoding

+ Floating point zero (0*) exactly the same bits as integer zero
= All bits=0

« Can (Almost) Use Unsigned Integer Comparison

= Must first compare sign bits
" Must consider0-=0*=0
" NaNs problematic

- Will be greater than any other values
« What should comparison yield?
" Otherwise OK

« Denorm vs. normalized
« Normalized vs. infinity

34

