http://xkcd.com/1953/
Adminstrivia

- Homework 1 due TONIGHT (4/10)
 - Reminder: autograded, 20 tries, no late submissions
- Lab 1a due Monday (4/15)
 - Submit `pointer.c` and `lab1Areflect.txt` to Canvas
- Lab 1b released soon, due Monday 4/22
 - Bit puzzles on number representation
 - Have much of what you need after today, will need floating point, coming soon
 - Section tomorrow will be useful!
 - Bonus slides at the end of today’s lecture have relevant examples
Extra Credit

❖ All labs starting with Lab 1b have extra credit portions
 ▪ These are meant to be fun extensions to the labs

❖ Extra credit points *don't* affect your lab grades
 ▪ From the course policies: “they will be accumulated over the course and will be used to bump up borderline grades at the end of the quarter.”
 ▪ Make sure you finish the rest of the lab before attempting any extra credit
Integers

- Binary representation of integers
 - Unsigned and signed
 - Casting in C

- Consequences of finite width representations
 - Overflow, sign extension

- Shifting and arithmetic operations
Two’s Complement Arithmetic

- The same addition procedure works for both unsigned and two’s complement integers
 - **Simplifies hardware:** only one algorithm for addition
 - **Algorithm:** simple addition, discard the highest carry bit
 - Called modular addition: result is sum \(\text{modulo } 2^w \)

4-bit Examples:

<table>
<thead>
<tr>
<th></th>
<th>0100</th>
<th>1100</th>
<th>0100</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>+0100</td>
<td>+1100</td>
<td>+0100</td>
</tr>
<tr>
<td>+3</td>
<td>+0011</td>
<td>+0011</td>
<td>+1101</td>
</tr>
<tr>
<td></td>
<td>0111</td>
<td>1111</td>
<td>0001</td>
</tr>
</tbody>
</table>

- \(4 + 3 = 7\)
- \((-4) + 3 = -1\)
- \((4) + (-3) = 1\)
Why Does Two’s Complement Work?

- For all representable positive integers x, we want:

$$\begin{align*}
\text{bit representation of } x & \quad + \quad \text{bit representation of } -x \\
\text{additive inverse} & \quad 0 \quad \text{(ignoring the carry-out bit)}
\end{align*}$$

- What are the 8-bit negative encodings for the following?

\[
\begin{align*}
00000001 & \quad + \quad ????
\quad \text{00000000} \\
11000011 & \quad + \quad ????
\quad \text{00000000}
\end{align*}
\]
Why Does Two’s Complement Work?

- For all representable positive integers \(x \), we want:

\[
\begin{align*}
\text{bit representation of } x & \\
+ \text{ bit representation of } -x & \\
0 & \quad \text{(ignoring the carry-out bit)}
\end{align*}
\]

- What are the 8-bit negative encodings for the following?

\[
\begin{align*}
00000001 & + 11111111 = 100000000 \\
00000010 & + 11111110 = 100000000 \\
11000011 & + 00111101 = 100000000
\end{align*}
\]

These are the bitwise complement plus 1!

\(-x = \sim x + 1\)
Signed/Unsigned Conversion Visualized

- Two’s Complement → Unsigned
 - Ordering Inversion
 - Negative → Big Positive

\[
2^{w-1} - 1 = \overbrace{0b0\ldots0}^{\text{2’s Complement Range}}
\]

\[
-2^{w-1} = \overbrace{0b10\ldots0}^{\text{TMin}}
\]

\[
\begin{align*}
UMax &= 0b1\ldots1 = 2^w - 1 \\
UMax - 1 \\
TMax + 1 \\
TMax \\
0b10\ldots0 &= 2^{w-1} \\
\text{Unsigned Range}
\end{align*}
\]

\[
0 = 0b0\ldots0 = UMin
\]
Values To Remember

- **Unsigned Values**
 - UMin = 0b00...0 = 0
 - UMax = 0b11...1 = $2^w - 1$

- **Two’s Complement Values**
 - Tmin = 0b10...0 = -2^{w-1}
 - Tmax = 0b01...1 = $2^{w-1} - 1$
 - -1 = 0b11...1

Example: Values for $w = 64$

<table>
<thead>
<tr>
<th></th>
<th>Decimal</th>
<th>Hex</th>
</tr>
</thead>
</table>
| UMax | 18,446,744,073,709,551,615 | FF FFFF
In C: Signed vs. Unsigned

- Casting
 - Bits are unchanged, just interpreted differently!
 - `int` tx, ty;
 - `unsigned int` ux, uy;
 - Explicit casting
 - tx = `(int)` ux;
 - uy = `(unsigned int)` ty;
 - Implicit casting can occur during assignments or function calls
 - Cast to target variable/parameter type
 - tx = ux;
 - uy = ty;
 (also implicitly occurs with printf format specifiers)
Casting Surprises

- Integer literals (constants)
 - By default, integer constants are considered *signed* integers
 - Hex constants already have an explicit binary representation
 - Use “U” (or “u”) suffix to explicitly force *unsigned*
 - Examples: 0U, 4294967259u

- Expression Evaluation
 - When you mix unsigned and signed in a single expression, then *signed values are implicitly cast to unsigned* (unsigned “dominates”)
 - Including comparison operators <, >, ==, <=, =>
Casting Surprises

- **32-bit examples:**
 - TMin = -2,147,483,648, TMax = 2,147,483,647

<table>
<thead>
<tr>
<th>Left Constant</th>
<th>Order</th>
<th>Right Constant</th>
<th>Interpretation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td><=</td>
<td>0 U</td>
<td>unsigned</td>
</tr>
<tr>
<td>1111 1111 1111 1111 1111 1111 1111 1111</td>
<td><</td>
<td>0</td>
<td>signed</td>
</tr>
<tr>
<td>0000 0000 0000 0000 0000 0000 0000 0000</td>
<td>></td>
<td>0U</td>
<td>unsigned</td>
</tr>
<tr>
<td>0000 0000 0000 0000 0000 0000 0000 0000</td>
<td>></td>
<td>-2147483648</td>
<td>signed</td>
</tr>
<tr>
<td>2147483647U</td>
<td>></td>
<td>2147483648U</td>
<td>unsigned</td>
</tr>
<tr>
<td>0111 1111 1111 1111 1111 1111 1111 1111</td>
<td>></td>
<td>-2</td>
<td>signed</td>
</tr>
<tr>
<td>1111 1111 1111 1111 1111 1111 1111 1111</td>
<td>></td>
<td>2147483648U</td>
<td>unsigned</td>
</tr>
<tr>
<td>0111 1111 1111 1111 1111 1111 1111 1111</td>
<td>></td>
<td>(int) 2147483648U</td>
<td>signed</td>
</tr>
</tbody>
</table>
Integers

- Binary representation of integers
 - Unsigned and signed
 - Casting in C

- Consequences of finite width representations
 - Overflow, sign extension

- Shifting and arithmetic operations
Arithmetic Overflow

- When a calculation produces a result that can’t be represented in the current encoding scheme
 - Integer range limited by fixed width
 - Can occur in both the positive and negative directions
- C and Java ignore overflow exceptions
 - You end up with a bad value in your program and no warning/indication... oops!

<table>
<thead>
<tr>
<th>Bits</th>
<th>Unsigned</th>
<th>Signed</th>
</tr>
</thead>
<tbody>
<tr>
<td>0000</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0001</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0010</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>0011</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>0100</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>0101</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>0110</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>0111</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>1000</td>
<td>8</td>
<td>-8</td>
</tr>
<tr>
<td>1001</td>
<td>9</td>
<td>-7</td>
</tr>
<tr>
<td>1010</td>
<td>10</td>
<td>-6</td>
</tr>
<tr>
<td>1011</td>
<td>11</td>
<td>-5</td>
</tr>
<tr>
<td>1100</td>
<td>12</td>
<td>-4</td>
</tr>
<tr>
<td>1101</td>
<td>13</td>
<td>-3</td>
</tr>
<tr>
<td>1110</td>
<td>14</td>
<td>-2</td>
</tr>
<tr>
<td>1111</td>
<td>15</td>
<td>-1</td>
</tr>
</tbody>
</table>
Overflow: Unsigned

- **Addition:** drop carry bit \((-2^N)\)

 \[
 \begin{array}{c}
 15 \\
 + 2 \\
 \hline
 17
 \end{array}
 \begin{array}{c}
 1111 \\
 + 0010 \\
 \hline
 10001
 \end{array}
 \]

- **Subtraction:** borrow \((+2^N)\)

 \[
 \begin{array}{c}
 1 \\
 - 2 \\
 \hline
 -1
 \end{array}
 \begin{array}{c}
 10001 \\
 - 0010 \\
 \hline
 1111
 \end{array}
 \]

\[\pm 2^N \text{ because of modular arithmetic} \]
Overflow: Two’s Complement

- **Addition**: $(+) + (+) = (−)$ result?

 $\begin{array}{c}
 6 \\
 + 3 \\
 \hline
 9 \\
 \end{array}
 \begin{array}{c}
 \text{Overflow}
 \\
 \text{Result: -7}
 \\
 \end{array}
 \begin{array}{c}
 \text{0110}
 \\
 + \text{0011}
 \hline
 \text{1001}
 \end{array}$

- **Subtraction**: $(−) + (−) = (+)$?

 $\begin{array}{c}
 -7 \\
 -3 \\
 \hline
 -10 \\
 \end{array}
 \begin{array}{c}
 \text{0110}
 \\
 -\text{0011}
 \hline
 \text{0110}
 \end{array}$

For signed: overflow if operands have same sign and result’s sign is different
Sign Extension

- What happens if you convert a signed integral data type to a larger one?
 - e.g. char → short → int → long

- 4-bit → 8-bit Example:
 - Positive Case
 - 4-bit: 0010 = +2
 - 8-bit: 00000010 = +2
 - Negative Case?
Peer Instruction Question

- Which of the following 8-bit numbers has the same **signed** value as the 4-bit number \(0b\underline{1100} \)?
 - Underlined digit = MSB
 - Vote at http://pollev.com/rea

A. \(0b \, 0000 \, 1100 \)

B. \(0b \, 1000 \, 1100 \)

C. \(0b \,

D. \(0b \, 1100 \, 1100 \)

E. We’re lost…

\[\begin{align*}
-8^{4} & + 2^{1} \\
-8 + 4 & = -4 \\
-x & = 0 \, 0 \, 1 \, 1 \\
+1 & = 4 \Rightarrow x = -4 \\
0 \, 1 \, 0 \, 0 & = 4
\end{align*} \]
Sign Extension

- **Task:** Given a \(w \)-bit signed integer \(X \), convert it to a \(w + k \)-bit signed integer \(X' \) \textit{with the same value}

- **Rule:** Add \(k \) copies of sign bit

 - Let \(x_i \) be the \(i \)-th digit of \(X \) in binary
 - \(X' = x_{w-1}, \ldots, x_{w-1}, x_{w-1}, x_{w-2}, \ldots, x_1, x_0 \)

![Diagram showing sign extension](image)
Sign Extension Example

- Convert from smaller to larger integral data types
- C automatically performs sign extension
 - Java too

```c
short int x =  12345;
int    ix = (int) x;
short int y = -12345;
int    iy = (int) y;
```

<table>
<thead>
<tr>
<th>Var</th>
<th>Decimal</th>
<th>Hex</th>
<th>Binary</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>12345</td>
<td>30 39</td>
<td>00110000 00111001</td>
</tr>
<tr>
<td>ix</td>
<td>12345</td>
<td>00 00 30 39</td>
<td>00000000 00000000 00110000 00111001</td>
</tr>
<tr>
<td>y</td>
<td>-12345</td>
<td>CF C7</td>
<td>11001111 11000111</td>
</tr>
<tr>
<td>iy</td>
<td>-12345</td>
<td>FF FF CF C7</td>
<td>11111111 11111111 11001111 11000111</td>
</tr>
</tbody>
</table>
Integers

- Binary representation of integers
 - Unsigned and signed
 - Casting in C
- Consequences of finite width representations
 - Overflow, sign extension
- **Shifting and arithmetic operations**
Shift Operations

- **Left shift** \((x << n)\) bit vector \(x\) by \(n\) positions
 - Throw away (drop) extra bits on left
 - Fill with 0s on right

- **Right shift** \((x >> n)\) bit-vector \(x\) by \(n\) positions
 - Throw away (drop) extra bits on right
 - Logical shift (for *unsigned* values)
 - Fill with 0s on left
 - Arithmetic shift (for *signed* values)
 - Replicate most significant bit on left
 - Maintains sign of \(x\)
Shift Operations

- **Left shift** \((x << n)\)
 - Fill with 0s on right

- **Right shift** \((x >> n)\)
 - **Logical shift** (for **unsigned** values)
 - Fill with 0s on left
 - **Arithmetic shift** (for **signed** values)
 - Replicate most significant bit on left

- **Notes:**
 - Shifts by \(n < 0\) or \(n \geq w\) (\(w\) is bit width of \(x\)) are \textit{undefined} behavior not guaranteed.
 - **In C:** behavior of \(>>\) is determined by compiler
 - In gcc / C lang, depends on data type of \(x\) (signed/unsigned)
 - **In Java:** logical shift is \(>>>\) and arithmetic shift is \(>>\)
Shifting Arithmetic?

- What are the following computing?
 - $x >> n$
 - $0b\ 0100 >> 1 = 0b\ 0010$
 - $0b\ 0100 >> 2 = 0b\ 0001$
 - Divide by 2^n
 - $x << n$
 - $0b\ 0001 << 1 = 0b\ 0010$
 - $0b\ 0001 << 2 = 0b\ 0100$
 - Multiply by 2^n

- Shifting is faster than general multiply and divide operations
Left Shifting Arithmetic 8-bit Example

- No difference in left shift operation for unsigned and signed numbers (just manipulates bits)
 - Difference comes during interpretation: \(x \times 2^n \)?

\[
\begin{align*}
x &= 25; & 00011001 &= 25 & 25 \\
L1 &= x << 2; & 001100100 &= 100 & 100 \\
L2 &= x << 3; & 0011001000 &= -56 & 200 \\
L3 &= x << 4; & 00110010000 &= -112 & 144
\end{align*}
\]
Right Shifting 8-bit Examples

Remainder: C operator >> does logical shift on unsigned values and arithmetic shift on signed values
- Logical Shift: $x/2^n$?

$x_u = 240u; \quad 11110000 = 240$

$R1_u = x_u >> 3; \quad 00011110000 = 30$
$R1_u = x_u >> 3; \quad 00011110000 = 30$

$R2_u = x_u >> 5; \quad 0000011110000 = 7$

(rounding (down))
Right Shifting Arithmetic 8-bit Examples

- **Reminder:** C operator `>>` does *logical* shift on *unsigned* values and *arithmetic* shift on *signed* values
 - **Arithmetic Shift:** $x/2^n$?

 $$\text{xs} = -16; \quad 11110000 \quad = \quad -16$$

 $$\text{R1s}=\text{xu}>>3; \quad 11111110000 \quad = \quad -2 \quad \downarrow\downarrow = -0.5$$

 $$\text{R2s}=\text{xu}>>5; \quad 1111111110000 \quad = \quad -1$$

 rounding (down)
Question

For the following expressions, find a value of signed char \(x \), if there exists one, that makes the expression \(\text{TRUE} \). Compare with your neighbor(s)!

- **Assume we are using 8-bit arithmetic:**
 - \(x == \) (unsigned char) \(x \)
 - \(x >= 128U \)
 - \(x != (x>>2)<<2 \)
 - \(x == -x \)
 - \((x < 128U) && (x > 0x3F) \)

Examples
- \(x == \) (unsigned char) \(x \)
 - \(x = 0 \)
 - All solutions: works for all \(x \)

- \(x >= 128U \)
 - \(x = -1 \)
 - Any \(x < 0 \)

- \(x != (x>>2)<<2 \)
 - \(x = 3 \)

- \(x == -x \)
 - \(x = 0 \)
 - Any \(x \) where lowest two bits are not \(0b00 \)
 - \(1\) \(x = 0b0...0 = 0 \)
 - \(2\) \(x = 0b10...0 = -128 \)

- \((x < 128U) && (x > 0x3F) \)
 - \(x = 64 \)
 - Any \(x \) where upper two bits are exactly \(0b01 \)
Summary

- **Sign and unsigned variables in C**
 - Bit pattern remains the same, just interpreted differently
 - Strange things can happen with our arithmetic when we convert/cast between sign and unsigned numbers
 - Type of variables affects behavior of operators (shifting, comparison)

- We can only represent so many numbers in \(w \) bits
 - When we exceed the limits, *arithmetic overflow* occurs
 - *Sign extension* tries to preserve value when expanding

- Shifting is a useful bitwise operator
 - Right shifting can be arithmetic (sign) or logical (0)
 - Can be used in multiplication with constant or bit masking
Some examples of using shift operators in combination with bitmasks, which you may find helpful for Lab 1.

- Extract the 2nd most significant byte of an \texttt{int}
- Extract the sign bit of a signed \texttt{int}
- Conditionals as Boolean expressions
Using Shifts and Masks

- Extract the 2nd most significant \textit{byte} of an \texttt{int}:
 - First shift, then mask: $(x\gg16) \& 0xFF$

<table>
<thead>
<tr>
<th>x</th>
<th>00000001 00000010 00000011 00000100</th>
</tr>
</thead>
<tbody>
<tr>
<td>$x\gg16$</td>
<td>00000000 00000000 00000001 00000100</td>
</tr>
<tr>
<td>0xFF</td>
<td>00000000 00000000 00000000 11111111</td>
</tr>
<tr>
<td>$(x\gg16) & 0xFF$</td>
<td>00000000 00000000 00000000 00000100</td>
</tr>
</tbody>
</table>

- Or first mask, then shift: $(x \& 0xFF0000) \gg 16$

<table>
<thead>
<tr>
<th>x</th>
<th>00000001 00000010 00000011 00000100</th>
</tr>
</thead>
<tbody>
<tr>
<td>0xFF0000</td>
<td>00000000 11111111 00000000 00000000</td>
</tr>
<tr>
<td>$x & 0xFF0000$</td>
<td>00000000 00000010 00000000 00000000</td>
</tr>
<tr>
<td>$(x&0xFF0000)\gg16$</td>
<td>00000000 00000000 00000000 00000100</td>
</tr>
</tbody>
</table>
Using Shifts and Masks

- Extract the **sign bit** of a signed `int`:
 - First shift, then mask: \((x\gg 31) \& 0x1\)
 - Assuming arithmetic shift here, but this works in either case
 - Need mask to clear 1s possibly shifted in

<table>
<thead>
<tr>
<th>(x)</th>
<th>00000001 00000010 00000011 00000100</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x\gg 31)</td>
<td>00000000 00000000 00000000 00000000</td>
</tr>
<tr>
<td>0x1</td>
<td>00000000 00000000 00000000 00000001</td>
</tr>
<tr>
<td>((x\gg 31) & 0x1)</td>
<td>00000000 00000000 00000000 00000000</td>
</tr>
</tbody>
</table>
Using Shifts and Masks

- **Conditionals as Boolean expressions**
 - For `int x`, what does `(x<<31)>>31` do?

`x=!!123`	00000000 00000000 00000000 00000001
`x<<31`	10000000 00000000 00000000 00000000
`(x<<31)>>31`	11111111 11111111 11111111 11111111
`!x`	00000000 00000000 00000000 00000000
`!x<<31`	00000000 00000000 00000000 00000000
`(!!x<<31)>>31`	00000000 00000000 00000000 00000000

- Can use in place of conditional:
 - In C: `if (x) {a=y;} else {a=z;}` equivalent to `a=x?y:z;`
 - `a=((x<<31)>>31)&y) | (((!!x<<31)>>31)&z);`