Data III \& Integers I

CSE 351 Spring 2019

Instructor:

Ruth Anderson
Teaching Assistants:
Gavin Cai
Jack Eggleston
John Feltrup
Britt Henderson
Richard Jiang
Jack Skalitzky
Sophie Tian
Connie Wang
Sam Wolfson

Casey Xing
Chin Yeoh

Administrivia

* Lab 0 due TODAY @ 11:59 pm
- You will be revisiting this program throughout this class!
* Homework 1 due Wednesday
- Reminder: autograded, 20 tries, no late submissions
* Lab 1a released
- Workflow:

1) Edit pointer.c
2) Run the Makefile (make) and check for compiler errors \& warnings
3) Run ptest (./ptest) and check for correct behavior
4) Run rule/syntax checker (python dlc.py) and check output

- Due Monday $4 / 15$, will overlap a bit with Lab 1 b
- We grade just your last submission

Lab Reflections

* All subsequent labs (after Lab 0) have a "reflection" portion
- The Reflection questions can be found on the lab specs and are intended to be done after you finish the lab
- You will type up your responses in a . txt file for submission on Canvas
- These will be graded "by hand" (read by TAs)
* Intended to check your understand of what you should have learned from the lab
- Also great practice for short answer questions on the exams

Memory, Data, and Addressing

* Hardware - High Level Overview
* Representing information as bits and bytes
- Memory is a byte-addressable array
- Machine "word" size = address size = register size
* Organizing and addressing data in memory
- Endianness - ordering bytes in memory
* Manipulating data in memory using C
* Boolean algebra and bit-level manipulations

Boolean Algebra

\% Developed by George Boole in 19th Century

- Algebraic representation of logic (True $\rightarrow 1$, False $\rightarrow 0$)
- AND: $A \& B=1$ when both A is 1 and B is 1
- OR: $\quad A \mid B=1$ when either A is 1 or B is 1
- XOR: $\quad A^{\wedge} B=1$ when either A is 1 or B is 1 , but not both
- NOT: $\sim A=1$ when A is 0 and vice-versa
- DeMorgan's Law:

$$
\begin{aligned}
& \sim(A \mid B)=\sim A \& \sim B \\
& \sim(A \& B)=\sim A \quad \mid \sim B
\end{aligned}
$$

AND		
$\&$	0	1
0	0	0
1	0	1

OR		
1	0	1
0	0	1
1	1	1

XOR		
\wedge	0	1
0	0	1
1	1	0

NOT	
\sim	
0	1
1	0

General Boolean Algebras

* Operate on bit vectors
- Operations applied bitwise
- All of the properties of Boolean algebra apply

01101001
$\& 01010101$

* Examples of useful operations:

$$
\begin{aligned}
& x^{\wedge} x=0 \\
& x|1=1, \quad x| 0=x
\end{aligned}
$$

$$
\begin{array}{r}
\begin{array}{r}
01010101 \\
01010101 \\
\hline 00000000
\end{array} \\
\hline
\end{array}
$$

011	01	01	01
11111	0	0	0
11111	01	01	

Bit-Level Operations in C

\& \& (AND), | (OR), ^ (XOR), ~ (NOT)

- View arguments as bit vectors, apply operations bitwise
- Apply to any "integral" data type
- long, int, short, char, unsigned
* Examples with char a, b, c;

Contrast: Logic Operations

* Logical operators in C: \& \& (AND), || (OR), ! (NOT)
- $\underline{\mathbf{0}}$ is False, anything nonzero is True
- Always return 0 or 1
- Early termination (a.k.a. short-circuit evaluation) of $\& \&,| |$
* Examples (char data type)
- ! 0x41 -> 0x00 - $0 x C C$ \&\& $0 x 33->0 x 01$
- ! 0x00 -> 0x01 • 0x00 || 0x33 -> 0x01
- !!0x41 -> 0x01
- p \& \& *p
- If p is the null pointer ($0 x 0$), then p is never dereferenced!

Roadmap

C:

```
```

car *C = malloc(sizeof(car));

```
```

car *C = malloc(sizeof(car));
c->miles = 100;
c->miles = 100;
c->gals = 17;
c->gals = 17;
float mpg = get_mpg(c);
float mpg = get_mpg(c);
free (c);

```
```

free (c);

```
```

Assembly language:

Machine code:

```
0111010000011000
```

0111010000011000
100011010000010000000010
100011010000010000000010
1000100111000010
1000100111000010
110000011111101000011111

```
110000011111101000011111
```

Java:

```
Car c = new Car();
c.setMiles(100);
c.setGals(17);
float mpg =
    c.getMPG();
```

Memory \& data Integers \& floats x86 assembly Procedures \& stacks Executables Arrays \& structs Memory \& caches Processes Virtual memory Memory allocation Java vs. C

OS:

Computer system:

But before we get to integers....

* Encode a standard deck of playing cards
* 52 cards in 4 suits
- How do we encode suits, face cards?
* What operations do we want to make easy to implement?
- Which is the higher value card?
- Are they the same suit?

Two possible representations

1) 1 bit per card (52): bit corresponding to card set to 1

low-order 52 bits of 64-bit word

- "One-hot" encoding (similar to set notation)
- Drawbacks:
- Hard to compare values and suits
- Large number of bits required

2) 1 bit per suit (4), 1 bit per number (13): 2 bits set

- Easier to compare suits and values, but still lots of bits used

Two better representations

3) Binary encoding of all 52 cards - only 6 bits needed

- $2^{6}=64 \geq 52$

- Fits in one byte (smaller than one-hot encodings)
- How can we make value and suit comparisons easier?

4) Separate binary encodings of suit (2 bits) and value (4 bits)

- Also fits in one byte, and easy to do comparisons

\mathbf{K}	\mathbf{Q}	\mathbf{J}	$\boldsymbol{\ldots}$.	$\mathbf{3}$	$\mathbf{2}$	\mathbf{A}
1101	1100	1011	\ldots	0011	0010	0001

Compare Card Suits

mask: a bit vector designed to achieve a desired behavior when used with a bitwise operator on another bit vector v.
Here we turn all but the bits of interest in v to 0 .

```
char hand[5];
char card1, card2; // two cards to compare
card1 = hand[0];
card2 = hand[1];
if ( sameSuitP(card1, card2) ) { ... }
```

\#define SUIT_MASK 0x30
int sameSuitP(char card1, char card2) \{
 /return (card1 \& SUIT_MASK) == (card2 \& SUIT_MASK);

> returns int SUIT_MASK $=0 \times 30=$| 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |\quad equivalent suit value

Compare Card Suits

behavior when used with a bitwise operator on another bit vector v.
Here we turn all but the bits of interest in v to 0 .

```
#define SUIT_MASK 0x30
int sameSuitP(char card1, char card2) {
    return (!((card1 & SUIT MASK) ^ (card2 & SUIT MASK)));
    //return (card1 & SUIT_MASK) == (card2 & SUIT_MASK);
}
```

0	0	0	1	0	0	1	0
$\&$							

0	0	1	1	0	0	0	0

0	0	1	1	0	0	0	0

0	0	0	1	0	0	0	0

\wedge

Compare Card Values

mask: a bit vector designed to achieve a desired behavior when used with a bitwise operator on another bit vector v.

```
char hand[5]; // represents a 5-card hand
char card1, card2; // two cards to compare
card1 = hand[0];
card2 = hand[1];
if ( greaterValue(card1, card2) ) { ... }
```

\#define VALUE_MASK 0x0F
int greaterValue (char card1, char card2) \{
return ((unsigned int) (card1 \& VALUE MASK)
(unsigned int) (card2 \& VALUE MASK)) ;
\}

VALUE_MASK $=0 \times 0 F=$\begin{tabular}{l|l|l|l|l|l|l|l|}
\hline 0 \& 0 \& 0 \& 0 \& 1 \& 1 \& 1 \& 1

\hline \& | suit | value | | |
| :--- | :--- | :---: | :---: |

\end{tabular}

mask: a bit vector designed to achieve a desired behavior when used with a bitwise operator on another bit vector v.

Compare Card Values

```
#define VALUE_MASK 0x0F
int greaterValue(char card1, char card2)
    return ((unsigned int)(card1 & VALUE_MASK) >
    (unsigned int)(card2 & VALUE_MASK));
```

\}

Integers

* Binary representation of integers
- Unsigned and signed
- Casting in C
* Consequences of finite width representation
- Overflow, sign extension
* Shifting and arithmetic operations

Encoding Integers

* The hardware (and C) supports two flavors of integers
- unsigned - only the non-negatives
- signed - both negatives and non-negatives
* Cannot represent all integers with w bits
- Only 2^{w} distinct bit patterns
- Unsigned values:

$$
0 \ldots 2^{w}-1
$$

- Signed values: $\quad-2^{w-1} \ldots 2^{w-1}-1$
* Example: 8-bit integers (e.g. char)
$-\infty \longleftrightarrow+\infty$

Unsigned Integers

* Unsigned values follow the standard base 2 system
- $\mathrm{b}_{7} \mathrm{~b}_{6} \mathrm{~b}_{5} \mathrm{~b}_{4} \mathrm{~b}_{3} \mathrm{~b}_{2} \mathrm{~b}_{1} \mathrm{~b}_{0}=\mathrm{b}_{7} 2^{7}+\mathrm{b}_{6} 2^{6}+\cdots+\mathrm{b}_{1} 2^{1}+\mathrm{b}_{0} 2^{0}$
* Add and subtract using the normal "carry" and "borrow" rules, just in binary

$$
\begin{array}{r}
63 \\
+\quad 8 \\
\hline 71 \\
\hline
\end{array}
$$

$$
\begin{array}{r}
00111111 \\
+00001000 \\
\hline 01000111 \\
\hline
\end{array}
$$

* Useful formula: $2^{\mathrm{N}-1}+2^{\mathrm{N}-2}+\ldots+2+1=2^{\mathrm{N}}-1$
- i.e. N ones in a row $=2^{\mathrm{N}}-1$
* How would you make signed integers?

Sign and Magnitude

* Designate the high-order bit (MSB) as the "sign bit"
- sign=0: positive numbers; sign=1: negative numbers
* Benefits:
- Using MSB as sign bit matches positive numbers with unsigned
- All zeros encoding is still $=0$
* Examples (8 bits):
- $0 \times 00=00000000_{2}$ is non-negative, because the sign bit is 0
- $0 \times 7 \mathrm{~F}=01111111_{2}$ is non-negative $\left(+127_{10}\right)$
- $0 \times 85=10000101_{2}$ is negative $\left(-5_{10}\right)$
- $0 \times 80=10000000_{2}$ is negative... zero???

Sign and Magnitude

* MSB is the sign bit, rest of the bits are magnitude * Drawbacks?

Sign and Magnitude

* MSB is the sign bit, rest of the bits are magnitude * Drawbacks:
- Two representations of 0 (bad for checking equality)

Sign and Magnitude

* MSB is the sign bit, rest of the bits are magnitude * Drawbacks:
- Two representations of 0 (bad for checking equality)
- Arithmetic is cumbersome
- Example: 4-3 ! = 4+(-3)

4			
$-\quad 3$			
1	-0100		
0001		\quad	4
---:			
-7		0100	
---:			
$+\quad 1011$			
1111			

- Negatives "increment" in wrong direction!

Two's Complement

* Let's fix these problems:

1) "Flip" negative encodings so incrementing works

Two's Complement

* Let's fix these problems:

1) "Flip" negative encodings so incrementing works
2) "Shift" negative numbers to eliminate -0

* MSB still indicates sign!
- This is why we represent one more negative than positive number (-2^{N-1} to $2^{N-1}-1$)

Two's Complement Negatives

* Accomplished with one neat mathematical trick!
b_{w-1} has weight -2^{w-1}, other bits have usual weights $+2^{i}$
- 4-bit Examples:
- 1010_{2} unsigned:

$$
1 * 2^{3}+0 * 2^{2}+1 * 2^{1}+0 * 2^{0}=10
$$

- 1010_{2} two's complement:

$$
-1^{*} 2^{3}+0 * 2^{2}+1^{*} 2^{1}+0 * 2^{0}=-6
$$

- -1 represented as:
$1111_{2}=-2^{3}+\left(2^{3}-1\right)$
- MSB makes it super negative, add up all the other bits to get back up to -1

Why Two's Complement is So Great

* Roughly same number of (+) and (-) numbers
* Positive number encodings match unsigned
* Single zero
* All zeros encoding $=0$
* Simple negation procedure:
- Get negative representation of any integer by taking bitwise complement and then adding one!

$$
(\sim x+1==-x)
$$

Peer Instruction Question

* Take the 4-bit number encoding $\mathrm{x}=0 \mathrm{~b} 1011$
* Which of the following numbers is NOT a valid interpretation of x using any of the number representation schemes discussed today?
- Unsigned, Sign and Magnitude, Two's Complement
- Vote at http://PollEv.com/rea
A. -4
B. -5
C. 11
D. -3
E. We're lost...

Summary

* Bit-level operators allow for fine-grained manipulations of data
- Bitwise AND (\&), OR (|), and NOT (~) different than logical AND (\& \&) , OR (| |), and NOT (!)
- Especially useful with bit masks
* Choice of encoding scheme is important
- Tradeoffs based on size requirements and desired operations
* Integers represented using unsigned and two's complement representations
- Limited by fixed bit width
- We'll examine arithmetic operations next lecture

