
CSE351, Spring 2019L04: Integers I

Data III & Integers I
CSE 351 Spring 2019
Data III & Integers I
CSE 351 Spring 2019

Instructor:
Ruth Anderson

Teaching Assistants:
Gavin Cai
Jack Eggleston
John Feltrup
Britt Henderson
Richard Jiang
Jack Skalitzky
Sophie Tian
Connie Wang
Sam Wolfson
Casey Xing
Chin Yeoh

http://xkcd.com/257/

CSE351, Spring 2019L04: Integers I

Administrivia

 Lab 0 due TODAY @ 11:59 pm
 You will be revisiting this program throughout this class!

 Homework 1 due Wednesday
 Reminder: autograded, 20 tries, no late submissions

 Lab 1a released
 Workflow:

1) Edit pointer.c
2) Run the Makefile (make) and check for compiler errors & warnings
3) Run ptest (./ptest) and check for correct behavior
4) Run rule/syntax checker (python dlc.py) and check output

 Due Monday 4/15, will overlap a bit with Lab 1b
• We grade just your last submission

2

CSE351, Spring 2019L04: Integers I

Lab Reflections

 All subsequent labs (after Lab 0) have a “reflection”
portion
 The Reflection questions can be found on the lab specs and

are intended to be done after you finish the lab
 You will type up your responses in a .txt file for

submission on Canvas
 These will be graded “by hand” (read by TAs)

 Intended to check your understand of what you
should have learned from the lab
 Also great practice for short answer questions on the exams

3

CSE351, Spring 2019L04: Integers I

Memory, Data, and Addressing

 Hardware - High Level Overview
 Representing information as bits and bytes
 Memory is a byte-addressable array
 Machine “word” size = address size = register size

 Organizing and addressing data in memory
 Endianness – ordering bytes in memory

 Manipulating data in memory using C
 Boolean algebra and bit-level manipulations

4

CSE351, Spring 2019L04: Integers I

Boolean Algebra

 Developed by George Boole in 19th Century
 Algebraic representation of logic (True 1, False 0)
 AND: A&B=1 when both A is 1 and B is 1
 OR: A|B=1 when either A is 1 or B is 1
 XOR: A^B=1 when either A is 1 or B is 1, but not both
 NOT: ~A=1 when A is 0 and vice-versa
 DeMorgan’s Law: ~(A|B) = ~A & ~B

~(A&B) = ~A | ~B

5

& 0 1

0 0 0

1 0 1

| 0 1

0 0 1

1 1 1

^ 0 1

0 0 1

1 1 0

~

0 1

1 0

AND OR XOR NOT

CSE351, Spring 2019L04: Integers I

General Boolean Algebras

 Operate on bit vectors
 Operations applied bitwise
 All of the properties of Boolean algebra apply

 Examples of useful operations:

,

6

01101001
& 01010101

01101001
| 01010101

01101001
^ 01010101 ~ 01010101

01010101
| 11110000
11110101

01010101
^ 01010101
00000000

CSE351, Spring 2019L04: Integers I

Bit-Level Operations in C

 & (AND), | (OR), ^ (XOR), ~ (NOT)
 View arguments as bit vectors, apply operations bitwise
 Apply to any “integral” data type

• long, int, short, char, unsigned

 Examples with char a, b, c;
 a = (char) 0x41; // 0x41->0b 0100 0001
b = ~a; // 0b ->0x

 a = (char) 0x69; // 0x69->0b 0110 1001
b = (char) 0x55; // 0x55->0b 0101 0101
c = a & b; // 0b ->0x

 a = (char) 0x41; // 0x41->0b 0100 0001
b = a; // 0b 0100 0001
c = a ^ b; // 0b ->0x

7

CSE351, Spring 2019L04: Integers I

Contrast: Logic Operations

 Logical operators in C: && (AND), || (OR), ! (NOT)
 0 is False, anything nonzero is True
 Always return 0 or 1
 Early termination (a.k.a. short-circuit evaluation) of &&, ||

 Examples (char data type)
 !0x41 -> 0x00

 !0x00 -> 0x01

 !!0x41 -> 0x01

 p && *p
• If p is the null pointer (0x0), then p is never dereferenced!

8

 0xCC && 0x33 -> 0x01

 0x00 || 0x33 -> 0x01

CSE351, Spring 2019L04: Integers I

Roadmap

9

car *c = malloc(sizeof(car));
c->miles = 100;
c->gals = 17;
float mpg = get_mpg(c);
free(c);

Car c = new Car();
c.setMiles(100);
c.setGals(17);
float mpg =

c.getMPG();

get_mpg:
pushq %rbp
movq %rsp, %rbp
...
popq %rbp
ret

Java:C:

Assembly
language:

Machine
code:

0111010000011000
100011010000010000000010
1000100111000010
110000011111101000011111

Computer
system:

OS:

Memory & data
Integers & floats
x86 assembly
Procedures & stacks
Executables
Arrays & structs
Memory & caches
Processes
Virtual memory
Memory allocation
Java vs. C

CSE351, Spring 2019L04: Integers I

But before we get to integers….

 Encode a standard deck of playing cards
 52 cards in 4 suits
 How do we encode suits, face cards?

 What operations do we want to make easy to implement?
 Which is the higher value card?
 Are they the same suit?

10

CSE351, Spring 2019L04: Integers I

Two possible representations

1) 1 bit per card (52): bit corresponding to card set to 1

 “One-hot” encoding (similar to set notation)
 Drawbacks:

• Hard to compare values and suits
• Large number of bits required

2) 1 bit per suit (4), 1 bit per number (13): 2 bits set

 Pair of one-hot encoded values
 Easier to compare suits and values, but still lots of bits used

11

low-order 52 bits of 64-bit word

4 suits 13 numbers

CSE351, Spring 2019L04: Integers I

Two better representations

3) Binary encoding of all 52 cards – only 6 bits needed


 Fits in one byte (smaller than one-hot encodings)
 How can we make value and suit comparisons easier?

4) Separate binary encodings of suit (2 bits) and value
(4 bits)

 Also fits in one byte, and easy to do comparisons

12

low-order 6 bits of a byte

suit value
♣ 00

♦ 01

♥ 10

♠ 11
K Q J . . . 3 2 A

1101 1100 1011 ... 0011 0010 0001

CSE351, Spring 2019L04: Integers I

Compare Card Suits
char hand[5]; // represents a 5-card hand

char card1, card2; // two cards to compare

card1 = hand[0];

card2 = hand[1];

...

if (sameSuitP(card1, card2)) { ... }

13

SUIT_MASK = 0x30 = 0 0 1 1 0 0 0 0

suit value

mask: a bit vector designed to achieve a desired
behavior when used with a bitwise operator on
another bit vector v.
Here we turn all but the bits of interest in v to 0.

#define SUIT_MASK 0x30

int sameSuitP(char card1, char card2) {
return (!((card1 & SUIT_MASK) ^ (card2 & SUIT_MASK)));
//return (card1 & SUIT_MASK) == (card2 & SUIT_MASK);

}

returns int equivalent

CSE351, Spring 2019L04: Integers I

Compare Card Suits

14

mask: a bit vector designed to achieve a desired
behavior when used with a bitwise operator on
another bit vector v.
Here we turn all but the bits of interest in v to 0.

#define SUIT_MASK 0x30

int sameSuitP(char card1, char card2) {
return (!((card1 & SUIT_MASK) ^ (card2 & SUIT_MASK)));
//return (card1 & SUIT_MASK) == (card2 & SUIT_MASK);

}

0 0 0 1 0 0 1 0 0 0 0 1 1 1 0 1

0 0 1 1 0 0 0 0 SUIT_MASK 0 0 1 1 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1
!(x^y) equivalent to x==y

🃂 🃎
&

=

^

!

=

&

CSE351, Spring 2019L04: Integers I

Compare Card Values

15

VALUE_MASK = 0x0F = 0 0 0 0 1 1 1 1

suit value

#define VALUE_MASK 0x0F

int greaterValue(char card1, char card2) {
return ((unsigned int)(card1 & VALUE_MASK) >

(unsigned int)(card2 & VALUE_MASK));
}

char hand[5]; // represents a 5-card hand

char card1, card2; // two cards to compare

card1 = hand[0];

card2 = hand[1];

...

if (greaterValue(card1, card2)) { ... }

mask: a bit vector designed to achieve a
desired behavior when used with a
bitwise operator on another bit vector v.

CSE351, Spring 2019L04: Integers I

Compare Card Values

16

#define VALUE_MASK 0x0F

int greaterValue(char card1, char card2) {
return ((unsigned int)(card1 & VALUE_MASK) >

(unsigned int)(card2 & VALUE_MASK));
}

0 0 1 0 0 0 1 0 🃂 0 0 1 0 1 1 0 1🃎
0 0 0 0 1 1 1 1 VALUE_MASK 0 0 0 0 1 1 1 1

& &

0 0 0 0 0 0 1 0 0 0 0 0 1 1 0 1
==

210 > 1310

0 (false)

mask: a bit vector designed to achieve a
desired behavior when used with a
bitwise operator on another bit vector v.

CSE351, Spring 2019L04: Integers I

Integers

 Binary representation of integers
 Unsigned and signed
 Casting in C

 Consequences of finite width representation
 Overflow, sign extension

 Shifting and arithmetic operations

17

CSE351, Spring 2019L04: Integers I

Encoding Integers

 The hardware (and C) supports two flavors of integers
 unsigned – only the non-negatives
 signed – both negatives and non-negatives

 Cannot represent all integers with bits
 Only distinct bit patterns
 Unsigned values: 0 ... –1
 Signed values: … –1

 Example: 8-bit integers (e.g. char)

18

-

𝟖𝟖ି𝟏𝟖ି𝟏

+

CSE351, Spring 2019L04: Integers I

Unsigned Integers

 Unsigned values follow the standard base 2 system


 Add and subtract using the normal “carry” and
“borrow” rules, just in binary

 Useful formula: + + + +
 i.e. ones in a row =

 How would you make signed integers?
19

00111111
+00001000
01000111

63
+ 8
71

CSE351, Spring 2019L04: Integers I

Sign and Magnitude

 Designate the high-order bit (MSB) as the “sign bit”
 sign=0: positive numbers; sign=1: negative numbers

 Benefits:
 Using MSB as sign bit matches positive numbers with

unsigned
 All zeros encoding is still = 0

 Examples (8 bits):
 0x00 = 000000002 is non-negative, because the sign bit is 0
 0x7F = 011111112 is non-negative (+12710)
 0x85 = 100001012 is negative (-510)
 0x80 = 100000002 is negative...

20

... zero???

Most Significant Bit

CSE351, Spring 2019L04: Integers I

Sign and Magnitude

 MSB is the sign bit, rest of the bits are magnitude
 Drawbacks?

21

0000

0001

0011

1111

1110

1100

1011

1010

1000 0111

0110

0100

0010

0101

1001

1101

+ 0
+ 1

+ 2

+ 3

+ 4

+ 5

+ 6
+ 7– 0

– 1

– 2

– 3

– 4

– 5

– 6
– 7

0000

0001

0011

1111

1110

1100

1011

1010

1000 0111

0110

0100

0010

0101

1001

1101

0
1

2

3

4

5

6
78

9

10

11

12

13

14
15

Unsigned Sign and
Magnitude

CSE351, Spring 2019L04: Integers I

Sign and Magnitude

 MSB is the sign bit, rest of the bits are magnitude
 Drawbacks:
 Two representations of 0 (bad for checking equality)

22

0000

0001

0011

1111

1110

1100

1011

1010

1000 0111

0110

0100

0010

0101

1001

1101

+ 0
+ 1

+ 2

+ 3

+ 4

+ 5

+ 6
+ 7– 0

– 1

– 2

– 3

– 4

– 5

– 6
– 7

Sign and
Magnitude

CSE351, Spring 2019L04: Integers I

Sign and Magnitude

 MSB is the sign bit, rest of the bits are magnitude
 Drawbacks:
 Two representations of 0 (bad for checking equality)
 Arithmetic is cumbersome

• Example: 4-3 != 4+(-3)

• Negatives “increment” in wrong
direction!

23

0000

0001

0011

1111

1110

1100

1011

1010

1000 0111

0110

0100

0010

0101

1001

1101

+ 0
+ 1

+ 2

+ 3

+ 4

+ 5

+ 6
+ 7– 0

– 1

– 2

– 3

– 4

– 5

– 6
– 7

0100
+ 1011
1111

0100
- 0011
0001

4
- 3
1

✓

4
+ -3
-7

✗

Sign and
Magnitude

CSE351, Spring 2019L04: Integers I

Two’s Complement

 Let’s fix these problems:
1) “Flip” negative encodings so incrementing works

24

0000

0001

0011

1111

1110

1100

1011

1010

1000 0111

0110

0100

0010

0101

1001

1101

+ 0
+ 1

+ 2

+ 3

+ 4

+ 5

+ 6
+ 7– 7

– 6

– 5

– 4

– 3

– 2

– 1
– 0

CSE351, Spring 2019L04: Integers I

Two’s Complement

 Let’s fix these problems:
1) “Flip” negative encodings so incrementing works
2) “Shift” negative numbers to eliminate –0

 MSB still indicates sign!
 This is why we represent one

more negative than positive
number (- to 1)

25

0000

0001

0011

1111

1110

1100

1011

1010

1000 0111

0110

0100

0010

0101

1001

1101

+ 0
+ 1

+ 2

+ 3

+ 4

+ 5

+ 6
+ 7– 8

– 7

– 6

– 5

– 4

– 3

– 2
– 1

CSE351, Spring 2019L04: Integers I

Two’s Complement Negatives

 Accomplished with one neat mathematical trick!

 4-bit Examples:
• 10102 unsigned:

1*23+0*22+1*21+0*20 = 10
• 10102 two’s complement:

-1*23+0*22+1*21+0*20 = –6

 -1 represented as:
11112 = -23+(23 – 1)
• MSB makes it super negative, add up

all the other bits to get back up to -1
26

୵ିଵ has weight ୵ିଵ, other bits have usual weights ୧

0w-1 w-2

0000

0001

0011

1111

1110

1100

1011

1010

1000 0111

0110

0100

0010

0101

1001

1101

+ 0
+ 1

+ 2

+ 3

+ 4

+ 5

+ 6
+ 7– 8

– 7

– 6

– 5

– 4

– 3

– 2
– 1

Two’s
Complement

CSE351, Spring 2019L04: Integers I

Why Two’s Complement is So Great

 Roughly same number of (+) and (–) numbers
 Positive number encodings match unsigned
 Single zero
 All zeros encoding = 0

 Simple negation procedure:
 Get negative representation

of any integer by taking
bitwise complement and
then adding one!
(~x + 1 == -x)

27

0000

0001

0011

1111

1110

1100

1011

1010

1000 0111

0110

0100

0010

0101

1001

1101

+ 0
+ 1

+ 2

+ 3

+ 4

+ 5

+ 6
+ 7– 8

– 7

– 6

– 5

– 4

– 3

– 2
– 1

Two’s
Complement

CSE351, Spring 2019L04: Integers I

Peer Instruction Question

 Take the 4-bit number encoding x = 0b1011
 Which of the following numbers is NOT a valid

interpretation of x using any of the number
representation schemes discussed today?
 Unsigned, Sign and Magnitude, Two’s Complement
 Vote at http://PollEv.com/rea

A. -4
B. -5
C. 11
D. -3
E. We’re lost…

28

CSE351, Spring 2019L04: Integers I

Summary

 Bit-level operators allow for fine-grained
manipulations of data
 Bitwise AND (&), OR (|), and NOT (~) different than logical

AND (&&), OR (||), and NOT (!)
 Especially useful with bit masks

 Choice of encoding scheme is important
 Tradeoffs based on size requirements and desired

operations
 Integers represented using unsigned and two’s

complement representations
 Limited by fixed bit width
 We’ll examine arithmetic operations next lecture

29

