Data III \& Integers I

CSE 351 Spring 2019

Instructor:

Ruth Anderson

Teaching Assistants:

Gavin Cai
Jack Eggleston
John Feltrup
Britt Henderson
Richard Jiang
Jack Skalitzky
Sophie Tian
Connie Wang
Sam Wolfson

http://xkcd.com/257/

Casey Xing
Chin Yeoh

Administrivia

* Lab 0 due TODAY @ 11:59 pm
- You will be revisiting this program throughout this class!
* Homework 1 due Wednesday
- Reminder: autograded, 20 tries, no late submissions
* Lab 1a released
- Workflow:

1) Edit pointer.c
2) Run the Makefile (make) and check for compiler errors \& warnings
3) Run ptest (./ptest) and check for correct behavior
4) Run rule/syntax checker (python dlc.py) and check output

- Due Monday 4/15, will overlap a bit with Lab 1b
- We grade just your last submission

Lab Reflections

* All subsequent labs (after Lab 0) have a "reflection" portion
- The Reflection questions can be found on the lab specs and are intended to be done after you finish the lab
- You will type up your responses in a .txt file for submission on Canvas
- These will be graded "by hand" (read by TAs)
* Intended to check your understand of what you should have learned from the lab
- Also great practice for short answer questions on the exams

Memory, Data, and Addressing

* Hardware - High Level Overview
* Representing information as bits and bytes
- Memory is a byte-addressable array
- Machine "word" size = address size = register size
* Organizing and addressing data in memory
- Endianness - ordering bytes in memory
* Manipulating data in memory using C
* Boolean algebra and bit-level manipulations

Boolean Algebra

* Developed by George Boole in 19th Century
- Algebraic representation of logic (True $\rightarrow 1$, False $\rightarrow 0$)
- AND: $A \& B=1$ when both A is 1 and B is 1
- OR: $\quad A \mid B=1$ when either A is 1 or B is 1
- XOR: $\quad A^{\wedge} B=1$ when either A is 1 or B is 1 , but not both
- NOT: $\sim A=1$ when A is 0 and vice-versa
- DeMorgan's Law: $\sim(A \mid B)=\sim A \& \sim B$
$\sim(A \& B)=\sim A \quad \mid \sim B$

AND		
$\&$	0	1
0	0	0
1	0	1

OR		
1	0	1
0	0	1
1	1	1

XOR		
\wedge	0	1
0	0	1
1	1	0

NOT	
\sim	
0	1
1	0

General Boolean Algebras

* Operate on bit vectors
- Operations applied bitwise
- All of the properties of Boolean algebra apply

$$
\begin{array}{r}
01101001 \\
\begin{array}{r}
21101001 \\
\& 01010101 \\
01000001
\end{array} \frac{01010101}{01111101} \xlongequal{01010101} \\
00111 \mid 00
\end{array} \frac{\sim 01010101}{10 \mid 01010}
$$

* Examples of useful operations:

$$
\begin{aligned}
& x^{\wedge} x=0 \\
& \begin{array}{c}
\text { "sets to 1" } \\
x \mid 1=1 \\
0 \mid 1=1 \\
1 \mid 1=1
\end{array}
\end{aligned}
$$

Bit-Level Operations in C

$\% \&(A N D), \mid(O R), ~ \wedge(X O R), \quad \sim(N O T)$

- View arguments as bit vectors, apply operations bitwise
- Apply to any "integral" data type
. 8 bytes) (4 bytes) (2 bries) (1 byte)
- long, int, short, char, unsigned
bit vector will be
width of datatype
* Examples with char a, b, c;
- a = (char) 0x41; // 0x41->0b $\frac{\text { Internally }}{0100001}$
b = ca; // Ob 1011 1110->0x BE
" a = (char) 0x69; // 0x69->0b 01101001
b = (char) 0x55; // 0x55->0b 01010101
c = a \& b;
// Ob $01000001->0 \times 41$
- a = (char) 0x41; // 0x41->0b 01000001
b = a;
// Ob 01000001
$\mathrm{c}=\mathrm{a} \wedge \mathrm{b}$;
// Ob $00000000->0 x 00$
Result

Contrast: Logic Operations

* Logical operators in C: \& \& (AND), ||(OR), ! (NOT)
- $\underline{0}$ is False, anything nonzero is True
$\begin{array}{ll}\text { - Always return } 0 \text { or } 1 & 0 \times c c=0 b 11001100 \\ 0 \times 33=0 b 0011 c 011\end{array}$
- Early termination (a.k.a. short-circuit evaluation) of $\& \&,| |$
* Examples (char data type) $0 \times(C$ \& $0 \times 33 \rightarrow 0 \times 00$
- ! 0x4 4^{\top}-> $0 \times 0^{F} 0$ - $0 \times C^{\top} C$ \&\& $0 \times 3^{\top} 3->0 \times 01$

- !(! $\left.0 x^{\top} 41\right)->0 \times 0^{\top}$
- ${ }^{\frac{1}{\mathrm{P}}} \& \& \star^{2} \mathrm{P}$
- If p is the null pointer (0×0), then p is never dereferenced! If (1) determines output of logical operator, then (2) is never evaluated

Roadmap

But before we get to integers....

* Encode a standard deck of playing cards
* 52 cards in 4 suits
- How do we encode suits, face cards?
* What operations do we want to make easy to implement?
- Which is the higher value card?

```
13 vahes
```

- Are they the same suit?

Two possible representations

${ }^{k}$ 1) 1 bit per card (52): bit corresponding to card set to 1 low-order 52 bits of 64-bit word

- "One-hot" encoding (similar to set notation)
- Drawbacks:
- Hard to compare values and suits
- Large number of bits required 52 bits $\xrightarrow[(56 \text { bits in }]{(7 \text { bytes }}$

2) 1 bit per suit (4), 1 bit per number (13): 2 bits set

- Easier to compare suits and values, but still lots of bits used

Two better representations

3) Binary encoding of all 52 cards - only 6 bits needed

- $\begin{aligned} & 2^{6}=64 \geq 52 \\ & 2^{5}=32<52\end{aligned}$

- Fits in one byte (smaller than one-hot encodings)
- How can we make value and suit comparisons easier?

4) Separate binary encodings of suit (2 bits) and value (4 bits)

- Also fits in one byte, and easy to do comparisons

\mathbf{K}	\mathbf{Q}	\mathbf{J}	$\boldsymbol{\cdots}$	$\mathbf{3}$	$\mathbf{2}$	\mathbf{A}					
1101	1100	1011	\ldots	0011	0010	0001					
13											

mask: a bit vector designed to achieve a desired behavior when used with a bitwise operator on another bit vector v.
Here we turn all but the bits of interest in v to 0 .

Compare Card Suits

mask: a bit vector designed to achieve a desired

Compare Card Suits

 behavior when used with a bitwise operator on another bit vector v.Here we turn all but the bits of interest in v to 0 .

```
#define SUIT_MASK 0x30
int sameSmitP(char (1)card1, char cavd2)
    return (! ((card1 & SUIT MASK) (2) (card2 _& SUIT MASK)));
    //return (card1 & SUIT_MASK) == (card2 & SUIT_MASK);
}
```


0	0	0	1	0	0	0	0

$$
x \& 1=x
$$

0	0	0	1	0	0	0	0

(2) \wedge

mask: a bit vector designed to achieve a

Compare Card Values

 desired behavior when used with a bitwise operator on another bit vector v.```
char hand[5]; // represents a 5-card hand
char cardl, card2; // two cards to compare
cardl = hand[0];
card2 = hand[1];
if (greaterValue(card1, card2)) { ... }
```

\#define VALUE_MASK OxOF
int greaterValue (char card1, char $\downarrow \operatorname{card2)}$
$\begin{aligned} \text { return } & (\text { (unsigned int) (card1 \& VALUE MASK) } \\ & (\text { unsigned int) }(\operatorname{card} 2 \underset{\&}{\& \quad V A L U E ~ M A S K)})\end{aligned}$
\}

## Compare Card Values

mask: a bit vector designed to achieve a desired behavior when used with a bitwise operator on another bit vector $v$.

```
#define VALUE_MASK 0x0F
int greaterValue(char card1, char card2)
 return ((unsigned int) (card1 (1) VALUE_MASK)
 (unsigned int) (card2(1)& VALUE_MASK));
}
```



## Integers

* Binary representation of integers
- Unsigned and signed
- Casting in C
* Consequences of finite width representation
- Overflow, sign extension
* Shifting and arithmetic operations


## Encoding Integers

* The hardware (and C) supports two flavors of integers
- unsigned - only the non-negatives
- signed - both negatives and non-negatives
* Cannot represent all integers with $w$ bits
- Only $2^{w}$ distinct bit patterns

- Unsigned values:



## Unsigned Integers

* Unsigned values follow the standard base 2 system
- $b_{7} b_{6} b_{5} b_{4} b_{3} b_{2} b_{1} b_{0}=b_{7} 2^{7}+b_{6} 2^{6}+\cdots+b_{1} 2^{1}+b_{0} 2^{0}$
* Add and subtract using the normal "carry" and "borrow" rules, just in binary

$$
\begin{array}{r}
63 \\
+\quad 8 \\
\hline 71 \\
\hline
\end{array}
$$

$$
\left.\begin{array}{r}
00111111 \\
+\frac{00001000}{01000111}
\end{array}\right\} \leftarrow 61 \text { s in arow }
$$

* Useful formula: $2^{\mathrm{N}-1}+2^{\mathrm{N}-2}+\ldots+2+1=2^{\mathrm{N}}-1$
i.e. N ones in a row $=2^{\mathrm{N}}-1$
* How would you make signed integers?


## Sign and Magnitude

## Most Significant Bit

* Designate the high-order bit (MSB) as the "sign bit"
- sign=0: positive numbers; sign=1: negative numbers
* Benefits:
- Using MSB as sign bit matches positive numbers with unsigned unsigned: $\mathrm{Ob} 0010=2^{\prime}=2$; sign $t_{\text {mas: }} 0 b 0010=+2^{\prime}=2$
- All zeros encoding is still $=0$
* Examples (8 bits):
$0 \times 00=00000000_{2}$ is non-negative, because the sign bit is 0
- $0 x 7 F=\underline{01111111_{2}}$ is non-negative $\left(+127_{10}\right)$
- $0 \times 85=10000101_{2}$ is negative $\left(-5_{10}\right)$
- $0 \times 80=10000000_{2}$ is negative... zero???


## Sign and Magnitude

* MSB is the sign bit, rest of the bits are magnitude * Drawbacks?



## Sign and Magnitude

* MSB is the sign bit, rest of the bits are magnitude
* Drawbacks:
- Two representations of 0 (bad for checking equality)



## Sign and Magnitude

* MSB is the sign bit, rest of the bits are magnitude
* Drawbacks:
- Two representations of 0 (bad for checking equality)
- Arithmetic is cumbersome
- Example: 4-3 ! = 4+(-3)

$$
\begin{array}{|r|r|}
\hline 4 \\
-\quad 3 \\
\hline 1 & -0100 \\
\hline 0001 \\
\hline
\end{array} \frac{\begin{array}{r}
4 \\
-7
\end{array}}{\frac{1011}{}+\begin{array}{r}
0100 \\
+1011 \\
\hline
\end{array}}
$$

- Negatives "increment" in wrong direction!



## Two's Complement

* Let's fix these problems:

1) "Flip" negative encodings so incrementing works


## Two's Complement

* Let's fix these problems:

1) "Flip" negative encodings so incrementing works
2) "Shift" negative numbers to eliminate -0

* MSB still indicates sign!
- This is why we represent one more negative than positive number $\left(-2^{N-1}\right.$ to $\left.2^{N-1}-1\right)$



## Two's Complement Negatives

* Accomplished with one neat mathematical trick!
$\mathrm{b}_{\mathrm{w}-1}$ has weight $-2^{\mathrm{w}-1}$, other bits have usual weights $+2^{\mathrm{i}}$


4-bit Examples:

- $1010_{2}$ unsigned:
$8 \frac{1 * 2^{3}+0^{*} 2^{2}+1^{*}}{} 2^{1}+0 * 2^{0}=10$
- 10102 two's complement:

$$
-1^{*} 2^{3}+0^{*} 2^{2}+1^{*} 2^{1}+0^{*} 2^{0}=-6
$$

- -1 represented as:

3 one's $\quad(1) 11_{2}=-2^{3}+\left(2^{3}-1\right)$
in a rou - MSB makes it super negative, add up all the other bits to get back up to -1


## Why Two's Complement is So Great

* Roughly same number of (+) and (-) numbers
* Positive number encodings match unsigned
* Single zero
* All zeros encoding = 0
* Simple negation procedure:
- Get negative representation of any integer by taking bitwise complement and then adding one!
$\left(x^{x}+1==-x\right)$



## Peer Instruction Question

* Take the 4-bit number encoding $\mathrm{x}=0 \mathrm{~b} 1011$
* Which of the following numbers is NOT a valid interpretation of x using any of the number representation schemes discussed today?
- Unsigned, Sign and Magnitude, Two's Complement
- Vote at http://PollEv.com/rea
A. -4
B. -5
C. 11

E. We're lost...

$$
\begin{aligned}
& \text { unsigned: } 8+2+1=11 \\
& \begin{aligned}
\text { sign +mag: } & 1011 \rightarrow-(2+1)=-3 \\
\text { two's: } & -8+2+1=-5 \\
- & x=060100+1=5 \rightarrow x=-5
\end{aligned}
\end{aligned}
$$

## Summary

* Bit-level operators allow for fine-grained manipulations of data
- Bitwise AND ( $\&)$, OR ( $\mid$ ), and NOT ( $\sim$ ) different than logical AND (\&\&), OR (||), and NOT (!)
- Especially useful with bit masks
* Choice of encoding scheme is important
- Tradeoffs based on size requirements and desired operations
* Integers represented using unsigned and two's complement representations
- Limited by fixed bit width
- We'll examine arithmetic operations next lecture

