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Administrivia

 Lab 0 due TODAY @ 11:59 pm
 You will be revisiting this program throughout this class!

 Homework 1 due Wednesday
 Reminder:  autograded, 20 tries, no late submissions

 Lab 1a released
 Workflow:

1) Edit pointer.c
2) Run the Makefile (make) and check for compiler errors & warnings
3) Run ptest (./ptest) and check for correct behavior
4) Run rule/syntax checker (python dlc.py) and check output 

 Due Monday 4/15, will overlap a bit with Lab 1b
• We grade just your last submission
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Lab Reflections

 All subsequent labs (after Lab 0) have a “reflection” 
portion
 The Reflection questions can be found on the lab specs and 

are intended to be done after you finish the lab
 You will type up your responses in a .txt file for 

submission on Canvas
 These will be graded “by hand” (read by TAs)

 Intended to check your understand of what you 
should have learned from the lab
 Also great practice for short answer questions on the exams
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Memory, Data, and Addressing

 Hardware - High Level Overview
 Representing information as bits and bytes
 Memory is a byte-addressable array
 Machine “word” size = address size = register size

 Organizing and addressing data in memory
 Endianness – ordering bytes in memory

 Manipulating data in memory using C
 Boolean algebra and bit-level manipulations
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Boolean Algebra

 Developed by George Boole in 19th Century
 Algebraic representation of logic (True 1, False 0)
 AND: A&B=1 when both A is 1 and B is 1
 OR: A|B=1 when either A is 1 or B is 1
 XOR: A^B=1 when either A is 1 or B is 1, but not both
 NOT: ~A=1 when A is 0 and vice-versa
 DeMorgan’s Law: ~(A|B) = ~A & ~B

~(A&B) = ~A | ~B
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General Boolean Algebras

 Operate on bit vectors
 Operations applied bitwise
 All of the properties of Boolean algebra apply

 Examples of useful operations:

,
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01101001
& 01010101

01101001
| 01010101

01101001
^ 01010101 ~ 01010101

01010101
| 11110000
11110101

01010101
^ 01010101
00000000
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Bit-Level Operations in C

 & (AND), | (OR), ^ (XOR), ~ (NOT)
 View arguments as bit vectors, apply operations bitwise
 Apply to any “integral” data type

• long,  int,  short,  char,  unsigned

 Examples with char a, b, c;
 a = (char) 0x41; // 0x41->0b 0100 0001
b = ~a; //       0b          ->0x

 a = (char) 0x69; // 0x69->0b 0110 1001
b = (char) 0x55; // 0x55->0b 0101 0101
c = a & b; //       0b          ->0x  

 a = (char) 0x41; // 0x41->0b 0100 0001
b = a; //       0b 0100 0001
c = a ^ b; //       0b ->0x
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Contrast:  Logic Operations

 Logical operators in C:  && (AND),  || (OR),  ! (NOT)
 0 is False,  anything nonzero is True
 Always return 0 or 1
 Early termination (a.k.a. short-circuit evaluation) of &&, ||

 Examples (char data type)
 !0x41  ->  0x00

 !0x00  ->  0x01

 !!0x41 ->  0x01

 p && *p
• If p is the null pointer (0x0), then p is never dereferenced!

8

 0xCC && 0x33 -> 0x01

 0x00 || 0x33 -> 0x01
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Roadmap
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car *c = malloc(sizeof(car));
c->miles = 100;
c->gals = 17;
float mpg = get_mpg(c);
free(c);

Car c = new Car();
c.setMiles(100);
c.setGals(17);
float mpg =

c.getMPG();

get_mpg:
pushq %rbp
movq %rsp, %rbp
...
popq %rbp
ret

Java:C:

Assembly 
language:

Machine 
code:

0111010000011000
100011010000010000000010
1000100111000010
110000011111101000011111

Computer 
system:

OS:

Memory & data
Integers & floats
x86 assembly
Procedures & stacks
Executables
Arrays & structs
Memory & caches
Processes
Virtual memory
Memory allocation
Java vs. C
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But before we get to integers….

 Encode a standard deck of playing cards
 52 cards in 4 suits
 How do we encode suits, face cards?

 What operations do we want to make easy to implement?
 Which is the higher value card?
 Are they the same suit?
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Two possible representations

1) 1 bit per card (52):  bit corresponding to card set to 1

 “One-hot” encoding  (similar to set notation)
 Drawbacks:

• Hard to compare values and suits
• Large number of bits required

2) 1 bit per suit (4), 1 bit per number (13):  2 bits set

 Pair of one-hot encoded values
 Easier to compare suits and values, but still lots of bits used
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low-order 52 bits of 64-bit word

4 suits 13 numbers
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Two better representations

3) Binary encoding of all 52 cards – only 6 bits needed


 Fits in one byte (smaller than one-hot encodings)
 How can we make value and suit comparisons easier?

4) Separate binary encodings of suit (2 bits) and value 
(4 bits)

 Also fits in one byte, and easy to do comparisons
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low-order 6 bits of a byte

suit value
♣ 00

♦ 01

♥ 10

♠ 11
K Q J .  .  . 3 2 A

1101 1100 1011 ... 0011 0010 0001
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Compare Card Suits
char hand[5];       // represents a 5-card hand

char card1, card2;  // two cards to compare

card1 = hand[0];

card2 = hand[1];

...

if ( sameSuitP(card1, card2) ) { ... }
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SUIT_MASK = 0x30 = 0 0 1 1 0 0 0 0

suit value

mask: a bit vector designed to achieve a desired 
behavior when used with a bitwise operator on 
another bit vector v.  
Here we turn all but the bits of interest in v to 0.

#define SUIT_MASK  0x30

int sameSuitP(char card1, char card2) {
return (!((card1 & SUIT_MASK) ^ (card2 & SUIT_MASK)));
//return (card1 & SUIT_MASK) == (card2 & SUIT_MASK);

}

returns int equivalent
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Compare Card Suits
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mask: a bit vector designed to achieve a desired 
behavior when used with a bitwise operator on 
another bit vector v.  
Here we turn all but the bits of interest in v to 0.

#define SUIT_MASK  0x30

int sameSuitP(char card1, char card2) {
return (!((card1 & SUIT_MASK) ^ (card2 & SUIT_MASK)));
//return (card1 & SUIT_MASK) == (card2 & SUIT_MASK);

}

0 0 0 1 0 0 1 0 0 0 0 1 1 1 0 1

0 0 1 1 0 0 0 0 SUIT_MASK 0 0 1 1 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1
!(x^y) equivalent to x==y

🃂 🃎
&

=

^

!

=

&
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Compare Card Values
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VALUE_MASK = 0x0F = 0 0 0 0 1 1 1 1

suit value

#define VALUE_MASK  0x0F

int greaterValue(char card1, char card2) {
return ((unsigned int)(card1 & VALUE_MASK) >

(unsigned int)(card2 & VALUE_MASK));
}

char hand[5];       // represents a 5-card hand

char card1, card2;  // two cards to compare

card1 = hand[0];

card2 = hand[1];

...

if ( greaterValue(card1, card2) ) { ... }

mask: a bit vector designed to achieve a 
desired behavior when used with a 
bitwise operator on another bit vector v.  
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Compare Card Values
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#define VALUE_MASK  0x0F

int greaterValue(char card1, char card2) {
return ((unsigned int)(card1 & VALUE_MASK) >

(unsigned int)(card2 & VALUE_MASK));
}

0 0 1 0 0 0 1 0 🃂 0 0 1 0 1 1 0 1🃎
0 0 0 0 1 1 1 1 VALUE_MASK 0 0 0 0 1 1 1 1

& &

0 0 0 0 0 0 1 0 0 0 0 0 1 1 0 1
==

210 > 1310

0 (false)

mask: a bit vector designed to achieve a 
desired behavior when used with a 
bitwise operator on another bit vector v.  
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Integers

 Binary representation of integers
 Unsigned and signed
 Casting in C

 Consequences of finite width representation
 Overflow, sign extension

 Shifting and arithmetic operations
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Encoding Integers

 The hardware (and C) supports two flavors of integers
 unsigned – only the non-negatives
 signed – both negatives and non-negatives

 Cannot represent all integers with bits
 Only distinct bit patterns
 Unsigned values: 0 ... –1
 Signed values: … –1

 Example: 8-bit integers (e.g. char)
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-

𝟖𝟖 𝟏𝟖 𝟏

+
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Unsigned Integers

 Unsigned values follow the standard base 2 system


 Add and subtract using the normal “carry” and 
“borrow” rules, just in binary

 Useful formula:  + + + + 
 i.e. ones in a row = 

 How would you make signed integers?
19

00111111
+00001000
01000111

63
+ 8
71
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Sign and Magnitude

 Designate the high-order bit (MSB) as the “sign bit”
 sign=0:  positive numbers;  sign=1: negative numbers

 Benefits:
 Using MSB as sign bit matches positive numbers with 

unsigned
 All zeros encoding is still = 0

 Examples (8 bits): 
 0x00 = 000000002 is non-negative, because the sign bit is 0
 0x7F = 011111112 is non-negative (+12710)
 0x85 = 100001012 is negative (-510)
 0x80 = 100000002 is negative...

20

... zero???

Most Significant Bit
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Sign and Magnitude

 MSB is the sign bit, rest of the bits are magnitude
 Drawbacks?
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Sign and Magnitude

 MSB is the sign bit, rest of the bits are magnitude
 Drawbacks:
 Two representations of 0  (bad for checking equality)
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Sign and Magnitude

 MSB is the sign bit, rest of the bits are magnitude
 Drawbacks:
 Two representations of 0 (bad for checking equality)
 Arithmetic is cumbersome

• Example:  4-3 != 4+(-3)

• Negatives “increment” in wrong
direction!
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Two’s Complement

 Let’s fix these problems:
1) “Flip” negative encodings so incrementing works 
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Two’s Complement

 Let’s fix these problems:
1) “Flip” negative encodings so incrementing works 
2) “Shift” negative numbers to eliminate –0

 MSB still indicates sign!
 This is why we represent one

more negative than positive
number (- to 1)
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Two’s Complement Negatives

 Accomplished with one neat mathematical trick!

 4-bit Examples:
• 10102 unsigned:

1*23+0*22+1*21+0*20 = 10
• 10102 two’s complement:

-1*23+0*22+1*21+0*20 = –6

 -1 represented as: 
11112 = -23+(23 – 1)
• MSB makes it super negative, add up 

all the other bits to get back up to -1
26

has weight , other bits have usual weights 

0w-1 w-2
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Why Two’s Complement is So Great

 Roughly same number of (+) and (–) numbers
 Positive number encodings match unsigned
 Single zero
 All zeros encoding = 0

 Simple negation procedure:
 Get negative representation 

of any integer by taking 
bitwise complement and 
then adding one!
( ~x + 1 == -x )
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Peer Instruction Question

 Take the 4-bit number encoding x = 0b1011
 Which of the following numbers is NOT a valid 

interpretation of x using any of the number 
representation schemes discussed today?
 Unsigned, Sign and Magnitude, Two’s Complement
 Vote at http://PollEv.com/rea

A. -4
B. -5
C. 11
D. -3
E. We’re lost…
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Summary

 Bit-level operators allow for fine-grained 
manipulations of data
 Bitwise AND (&), OR (|), and NOT (~) different than logical 

AND (&&), OR (||), and NOT (!)
 Especially useful with bit masks

 Choice of encoding scheme is important
 Tradeoffs based on size requirements and desired 

operations
 Integers represented using unsigned and two’s 

complement representations
 Limited by fixed bit width
 We’ll examine arithmetic operations next lecture
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