
CSE351, Spring 2019L04: Integers I

Data III & Integers I
CSE 351 Spring 2019
Data III & Integers I
CSE 351 Spring 2019

Instructor:
Ruth Anderson

Teaching Assistants:
Gavin Cai
Jack Eggleston
John Feltrup
Britt Henderson
Richard Jiang
Jack Skalitzky
Sophie Tian
Connie Wang
Sam Wolfson
Casey Xing
Chin Yeoh

http://xkcd.com/257/

CSE351, Spring 2019L04: Integers I

Administrivia

 Lab 0 due TODAY @ 11:59 pm
 You will be revisiting this program throughout this class!

 Homework 1 due Wednesday
 Reminder: autograded, 20 tries, no late submissions

 Lab 1a released
 Workflow:

1) Edit pointer.c
2) Run the Makefile (make) and check for compiler errors & warnings
3) Run ptest (./ptest) and check for correct behavior
4) Run rule/syntax checker (python dlc.py) and check output

 Due Monday 4/15, will overlap a bit with Lab 1b
• We grade just your last submission

2

CSE351, Spring 2019L04: Integers I

Lab Reflections

 All subsequent labs (after Lab 0) have a “reflection”
portion
 The Reflection questions can be found on the lab specs and

are intended to be done after you finish the lab
 You will type up your responses in a .txt file for

submission on Canvas
 These will be graded “by hand” (read by TAs)

 Intended to check your understand of what you
should have learned from the lab
 Also great practice for short answer questions on the exams

3

CSE351, Spring 2019L04: Integers I

Memory, Data, and Addressing

 Hardware - High Level Overview
 Representing information as bits and bytes
 Memory is a byte-addressable array
 Machine “word” size = address size = register size

 Organizing and addressing data in memory
 Endianness – ordering bytes in memory

 Manipulating data in memory using C
 Boolean algebra and bit-level manipulations

4

CSE351, Spring 2019L04: Integers I

Boolean Algebra

 Developed by George Boole in 19th Century
 Algebraic representation of logic (True 1, False 0)
 AND: A&B=1 when both A is 1 and B is 1
 OR: A|B=1 when either A is 1 or B is 1
 XOR: A^B=1 when either A is 1 or B is 1, but not both
 NOT: ~A=1 when A is 0 and vice-versa
 DeMorgan’s Law: ~(A|B) = ~A & ~B

~(A&B) = ~A | ~B

5

& 0 1

0 0 0

1 0 1

| 0 1

0 0 1

1 1 1

^ 0 1

0 0 1

1 1 0

~

0 1

1 0

AND OR XOR NOT

CSE351, Spring 2019L04: Integers I

General Boolean Algebras

 Operate on bit vectors
 Operations applied bitwise
 All of the properties of Boolean algebra apply

 Examples of useful operations:

,

6

01101001
& 01010101

01101001
| 01010101

01101001
^ 01010101 ~ 01010101

01010101
| 11110000
11110101

01010101
^ 01010101
00000000

CSE351, Spring 2019L04: Integers I

Bit-Level Operations in C

 & (AND), | (OR), ^ (XOR), ~ (NOT)
 View arguments as bit vectors, apply operations bitwise
 Apply to any “integral” data type

• long, int, short, char, unsigned

 Examples with char a, b, c;
 a = (char) 0x41; // 0x41->0b 0100 0001
b = ~a; // 0b ->0x

 a = (char) 0x69; // 0x69->0b 0110 1001
b = (char) 0x55; // 0x55->0b 0101 0101
c = a & b; // 0b ->0x

 a = (char) 0x41; // 0x41->0b 0100 0001
b = a; // 0b 0100 0001
c = a ^ b; // 0b ->0x

7

CSE351, Spring 2019L04: Integers I

Contrast: Logic Operations

 Logical operators in C: && (AND), || (OR), ! (NOT)
 0 is False, anything nonzero is True
 Always return 0 or 1
 Early termination (a.k.a. short-circuit evaluation) of &&, ||

 Examples (char data type)
 !0x41 -> 0x00

 !0x00 -> 0x01

 !!0x41 -> 0x01

 p && *p
• If p is the null pointer (0x0), then p is never dereferenced!

8

 0xCC && 0x33 -> 0x01

 0x00 || 0x33 -> 0x01

CSE351, Spring 2019L04: Integers I

Roadmap

9

car *c = malloc(sizeof(car));
c->miles = 100;
c->gals = 17;
float mpg = get_mpg(c);
free(c);

Car c = new Car();
c.setMiles(100);
c.setGals(17);
float mpg =

c.getMPG();

get_mpg:
pushq %rbp
movq %rsp, %rbp
...
popq %rbp
ret

Java:C:

Assembly
language:

Machine
code:

0111010000011000
100011010000010000000010
1000100111000010
110000011111101000011111

Computer
system:

OS:

Memory & data
Integers & floats
x86 assembly
Procedures & stacks
Executables
Arrays & structs
Memory & caches
Processes
Virtual memory
Memory allocation
Java vs. C

CSE351, Spring 2019L04: Integers I

But before we get to integers….

 Encode a standard deck of playing cards
 52 cards in 4 suits
 How do we encode suits, face cards?

 What operations do we want to make easy to implement?
 Which is the higher value card?
 Are they the same suit?

10

CSE351, Spring 2019L04: Integers I

Two possible representations

1) 1 bit per card (52): bit corresponding to card set to 1

 “One-hot” encoding (similar to set notation)
 Drawbacks:

• Hard to compare values and suits
• Large number of bits required

2) 1 bit per suit (4), 1 bit per number (13): 2 bits set

 Pair of one-hot encoded values
 Easier to compare suits and values, but still lots of bits used

11

low-order 52 bits of 64-bit word

4 suits 13 numbers

CSE351, Spring 2019L04: Integers I

Two better representations

3) Binary encoding of all 52 cards – only 6 bits needed

 Fits in one byte (smaller than one-hot encodings)
 How can we make value and suit comparisons easier?

4) Separate binary encodings of suit (2 bits) and value
(4 bits)

 Also fits in one byte, and easy to do comparisons

12

low-order 6 bits of a byte

suit value
♣ 00

♦ 01

♥ 10

♠ 11
K Q J . . . 3 2 A

1101 1100 1011 ... 0011 0010 0001

CSE351, Spring 2019L04: Integers I

Compare Card Suits
char hand[5]; // represents a 5-card hand

char card1, card2; // two cards to compare

card1 = hand[0];

card2 = hand[1];

...

if (sameSuitP(card1, card2)) { ... }

13

SUIT_MASK = 0x30 = 0 0 1 1 0 0 0 0

suit value

mask: a bit vector designed to achieve a desired
behavior when used with a bitwise operator on
another bit vector v.
Here we turn all but the bits of interest in v to 0.

#define SUIT_MASK 0x30

int sameSuitP(char card1, char card2) {
return (!((card1 & SUIT_MASK) ^ (card2 & SUIT_MASK)));
//return (card1 & SUIT_MASK) == (card2 & SUIT_MASK);

}

returns int equivalent

CSE351, Spring 2019L04: Integers I

Compare Card Suits

14

mask: a bit vector designed to achieve a desired
behavior when used with a bitwise operator on
another bit vector v.
Here we turn all but the bits of interest in v to 0.

#define SUIT_MASK 0x30

int sameSuitP(char card1, char card2) {
return (!((card1 & SUIT_MASK) ^ (card2 & SUIT_MASK)));
//return (card1 & SUIT_MASK) == (card2 & SUIT_MASK);

}

0 0 0 1 0 0 1 0 0 0 0 1 1 1 0 1

0 0 1 1 0 0 0 0 SUIT_MASK 0 0 1 1 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1
!(x^y) equivalent to x==y

🃂 🃎
&

=

^

!

=

&

CSE351, Spring 2019L04: Integers I

Compare Card Values

15

VALUE_MASK = 0x0F = 0 0 0 0 1 1 1 1

suit value

#define VALUE_MASK 0x0F

int greaterValue(char card1, char card2) {
return ((unsigned int)(card1 & VALUE_MASK) >

(unsigned int)(card2 & VALUE_MASK));
}

char hand[5]; // represents a 5-card hand

char card1, card2; // two cards to compare

card1 = hand[0];

card2 = hand[1];

...

if (greaterValue(card1, card2)) { ... }

mask: a bit vector designed to achieve a
desired behavior when used with a
bitwise operator on another bit vector v.

CSE351, Spring 2019L04: Integers I

Compare Card Values

16

#define VALUE_MASK 0x0F

int greaterValue(char card1, char card2) {
return ((unsigned int)(card1 & VALUE_MASK) >

(unsigned int)(card2 & VALUE_MASK));
}

0 0 1 0 0 0 1 0 🃂 0 0 1 0 1 1 0 1🃎
0 0 0 0 1 1 1 1 VALUE_MASK 0 0 0 0 1 1 1 1

& &

0 0 0 0 0 0 1 0 0 0 0 0 1 1 0 1
==

210 > 1310

0 (false)

mask: a bit vector designed to achieve a
desired behavior when used with a
bitwise operator on another bit vector v.

CSE351, Spring 2019L04: Integers I

Integers

 Binary representation of integers
 Unsigned and signed
 Casting in C

 Consequences of finite width representation
 Overflow, sign extension

 Shifting and arithmetic operations

17

CSE351, Spring 2019L04: Integers I

Encoding Integers

 The hardware (and C) supports two flavors of integers
 unsigned – only the non-negatives
 signed – both negatives and non-negatives

 Cannot represent all integers with bits
 Only distinct bit patterns
 Unsigned values: 0 ... –1
 Signed values: … –1

 Example: 8-bit integers (e.g. char)

18

-

𝟖𝟖 𝟏𝟖 𝟏

+

CSE351, Spring 2019L04: Integers I

Unsigned Integers

 Unsigned values follow the standard base 2 system

 Add and subtract using the normal “carry” and
“borrow” rules, just in binary

 Useful formula: + + + +
 i.e. ones in a row =

 How would you make signed integers?
19

00111111
+00001000
01000111

63
+ 8
71

CSE351, Spring 2019L04: Integers I

Sign and Magnitude

 Designate the high-order bit (MSB) as the “sign bit”
 sign=0: positive numbers; sign=1: negative numbers

 Benefits:
 Using MSB as sign bit matches positive numbers with

unsigned
 All zeros encoding is still = 0

 Examples (8 bits):
 0x00 = 000000002 is non-negative, because the sign bit is 0
 0x7F = 011111112 is non-negative (+12710)
 0x85 = 100001012 is negative (-510)
 0x80 = 100000002 is negative...

20

... zero???

Most Significant Bit

CSE351, Spring 2019L04: Integers I

Sign and Magnitude

 MSB is the sign bit, rest of the bits are magnitude
 Drawbacks?

21

0000

0001

0011

1111

1110

1100

1011

1010

1000 0111

0110

0100

0010

0101

1001

1101

+ 0
+ 1

+ 2

+ 3

+ 4

+ 5

+ 6
+ 7– 0

– 1

– 2

– 3

– 4

– 5

– 6
– 7

0000

0001

0011

1111

1110

1100

1011

1010

1000 0111

0110

0100

0010

0101

1001

1101

0
1

2

3

4

5

6
78

9

10

11

12

13

14
15

Unsigned Sign and
Magnitude

CSE351, Spring 2019L04: Integers I

Sign and Magnitude

 MSB is the sign bit, rest of the bits are magnitude
 Drawbacks:
 Two representations of 0 (bad for checking equality)

22

0000

0001

0011

1111

1110

1100

1011

1010

1000 0111

0110

0100

0010

0101

1001

1101

+ 0
+ 1

+ 2

+ 3

+ 4

+ 5

+ 6
+ 7– 0

– 1

– 2

– 3

– 4

– 5

– 6
– 7

Sign and
Magnitude

CSE351, Spring 2019L04: Integers I

Sign and Magnitude

 MSB is the sign bit, rest of the bits are magnitude
 Drawbacks:
 Two representations of 0 (bad for checking equality)
 Arithmetic is cumbersome

• Example: 4-3 != 4+(-3)

• Negatives “increment” in wrong
direction!

23

0000

0001

0011

1111

1110

1100

1011

1010

1000 0111

0110

0100

0010

0101

1001

1101

+ 0
+ 1

+ 2

+ 3

+ 4

+ 5

+ 6
+ 7– 0

– 1

– 2

– 3

– 4

– 5

– 6
– 7

0100
+ 1011
1111

0100
- 0011
0001

4
- 3
1

✓

4
+ -3
-7

✗

Sign and
Magnitude

CSE351, Spring 2019L04: Integers I

Two’s Complement

 Let’s fix these problems:
1) “Flip” negative encodings so incrementing works

24

0000

0001

0011

1111

1110

1100

1011

1010

1000 0111

0110

0100

0010

0101

1001

1101

+ 0
+ 1

+ 2

+ 3

+ 4

+ 5

+ 6
+ 7– 7

– 6

– 5

– 4

– 3

– 2

– 1
– 0

CSE351, Spring 2019L04: Integers I

Two’s Complement

 Let’s fix these problems:
1) “Flip” negative encodings so incrementing works
2) “Shift” negative numbers to eliminate –0

 MSB still indicates sign!
 This is why we represent one

more negative than positive
number (- to 1)

25

0000

0001

0011

1111

1110

1100

1011

1010

1000 0111

0110

0100

0010

0101

1001

1101

+ 0
+ 1

+ 2

+ 3

+ 4

+ 5

+ 6
+ 7– 8

– 7

– 6

– 5

– 4

– 3

– 2
– 1

CSE351, Spring 2019L04: Integers I

Two’s Complement Negatives

 Accomplished with one neat mathematical trick!

 4-bit Examples:
• 10102 unsigned:

1*23+0*22+1*21+0*20 = 10
• 10102 two’s complement:

-1*23+0*22+1*21+0*20 = –6

 -1 represented as:
11112 = -23+(23 – 1)
• MSB makes it super negative, add up

all the other bits to get back up to -1
26

has weight , other bits have usual weights

0w-1 w-2

0000

0001

0011

1111

1110

1100

1011

1010

1000 0111

0110

0100

0010

0101

1001

1101

+ 0
+ 1

+ 2

+ 3

+ 4

+ 5

+ 6
+ 7– 8

– 7

– 6

– 5

– 4

– 3

– 2
– 1

Two’s
Complement

CSE351, Spring 2019L04: Integers I

Why Two’s Complement is So Great

 Roughly same number of (+) and (–) numbers
 Positive number encodings match unsigned
 Single zero
 All zeros encoding = 0

 Simple negation procedure:
 Get negative representation

of any integer by taking
bitwise complement and
then adding one!
(~x + 1 == -x)

27

0000

0001

0011

1111

1110

1100

1011

1010

1000 0111

0110

0100

0010

0101

1001

1101

+ 0
+ 1

+ 2

+ 3

+ 4

+ 5

+ 6
+ 7– 8

– 7

– 6

– 5

– 4

– 3

– 2
– 1

Two’s
Complement

CSE351, Spring 2019L04: Integers I

Peer Instruction Question

 Take the 4-bit number encoding x = 0b1011
 Which of the following numbers is NOT a valid

interpretation of x using any of the number
representation schemes discussed today?
 Unsigned, Sign and Magnitude, Two’s Complement
 Vote at http://PollEv.com/rea

A. -4
B. -5
C. 11
D. -3
E. We’re lost…

28

CSE351, Spring 2019L04: Integers I

Summary

 Bit-level operators allow for fine-grained
manipulations of data
 Bitwise AND (&), OR (|), and NOT (~) different than logical

AND (&&), OR (||), and NOT (!)
 Especially useful with bit masks

 Choice of encoding scheme is important
 Tradeoffs based on size requirements and desired

operations
 Integers represented using unsigned and two’s

complement representations
 Limited by fixed bit width
 We’ll examine arithmetic operations next lecture

29

