Data III & Integers I

CSE 351 Spring 2019

Instructor:

Ruth Anderson

Teaching Assistants:

Gavin Cai Jack Eggleston John Feltrup Britt Henderson Richard Jiang Jack Skalitzky Sophie Tian Connie Wang Sam Wolfson Casey Xing Chin Yeoh

http://xkcd.com/257/

Administrivia

- Lab 0 due TODAY @ 11:59 pm
 - You will be revisiting this program throughout this class!
- Homework 1 due Wednesday
 - Reminder: autograded, 20 tries, no late submissions
- Lab 1a released
 - Workflow:
 - 1) Edit pointer.c
 - 2) Run the Makefile (make) and check for compiler errors & warnings
 - 3) Run ptest (./ptest) and check for correct behavior
 - 4) Run rule/syntax checker (python dlc.py) and check output
 - Due Monday 4/15, will overlap a bit with Lab 1b
 - We grade just your *last* submission

Lab Reflections

- All subsequent labs (after Lab 0) have a "reflection" portion
 - The Reflection questions can be found on the lab specs and are intended to be done *after* you finish the lab
 - You will type up your responses in a .txt file for submission on Canvas
 - These will be graded "by hand" (read by TAs)
- Intended to check your understand of what you should have learned from the lab
 - Also great practice for short answer questions on the exams

Memory, Data, and Addressing

- Hardware High Level Overview
- Representing information as bits and bytes
 - Memory is a byte-addressable array
 - Machine "word" size = address size = register size
- Organizing and addressing data in memory
 - Endianness ordering bytes in memory
- Manipulating data in memory using C
- Boolean algebra and bit-level manipulations

Boolean Algebra

- Developed by George Boole in 19th Century
 - Algebraic representation of logic (True $\rightarrow 1$, False $\rightarrow 0$)
 - AND: A&B=1 when both A is 1 and B is 1
 - OR: A | B=1 when either A is 1 or B is 1
 - XOR: A^B=1 when either A is 1 or B is 1, but not both
 - NOT: ~A=1 when A is 0 and vice-versa
 - DeMorgan's Law: $\sim (A | B) = \sim A \& \sim B$ $\sim (A \& B) = \sim A | \sim B$

AND					OR		Х	OR	NOT		
&	0	1		I	0	1	^	0	1	~	
0	0	0		0	0	1	 0	0	1	0	1
1	0	1		1	1	1	1	1	0	1	0

General Boolean Algebras

- Operate on bit vectors
 - Operations applied bitwise
 - All of the properties of Boolean algebra apply 01101001 01101001 01101001
 - <u>& 01010101</u> 01000001
- 01010101

<u>^ 01010101</u> <u>~ 01010101</u> 0()||||00

Examples of useful operations:

Bit-Level Operations in C

- A (AND), | (OR), ^ (XOR), ~ (NOT)
 - View arguments as bit vectors, apply operations bitwise

Contrast: Logic Operations

- ✤ Logical operators in C: & & (AND), | | (OR), ! (NOT)
 - <u>0</u> is False, <u>anything nonzero</u> is True
 - Alwaysreturn 0 or 1 $0 \times CC = 06 1100 1100$ $0 \times 33 = 05001 0011$
 - Early termination (a.k.a. short-circuit evaluation) of & &, | |
- ★ Examples (char data type) ○×(C & ○×33 -> ○×00)
 - !0x41 -> 0x00 0xCC && 0x33 -> 0x01
 - = !0x00 -> 0x01 = 0x00 || 0x33 -> 0x01
 - $= !(! 0 \times 41) -> 0 \times 01$
 - p && *p
 - If p is the null pointer (0x0), then p is never dereferenced!

If 1) determines output of logical operator, then 2) is never evaluated

Roadmap

But before we get to integers....

- Encode a standard deck of playing cards
- ✤ 52 cards in 4 suits
 - How do we encode suits, face cards?
- What operations do we want to make easy to implement?
 - Which is the higher value card?
 - Are they the same suit?

	(_																		_
	A ♣	2 *	*	3 *	*	4 .≁	*	5 *	*	6 **	*	7.	*	8.	*	9 •	*	10 * * * *	J +	₽ *	K +
(*	-		<u>_</u>	*	-	-	*		*	*	*	*	*	*	**	**	**			
	1	¥	÷	ž	÷	ž *	**	*	*š	*	*9	*	۴Į	*	*8	*	*6	****	i 🛀	<u> </u> <u>*</u> €	k 🕰
$\langle \langle \langle \rangle \rangle$	A ∳	2 ♠	٠	3	٠	4	٠	5.♠	٠	6 ♠	٠	7♠	٠	8.♠	•	9.♠	٠		J.	₽ 	K ♠
					٠			•		٠	٠	•				÷	•	↓			
1 Cr C		¥	۴	ž	Ŵ	έ	Ť.	Ť,	ŤŜ	۴	†	۴	ΨĽ	۴	•	Ý	* 6	₩₩	ľ 🚺 🛉		K 📲
\mathcal{N}	A •	2	٠	3♥	٠	4♥	٠	5 ♥ ·	•	€ ♥	•	₹•		8,♥		9.♥	•	10	J		K V
	•				٠			•		٠	٠	•	•				×.				
		÷	٠	ĉ	٠	٤	•	•	¢¢	٠	\$\$	٠	♠ <u>^</u>	٠	•	٠	•6	** * 0			
	A ♦	2	٠	3	٠	4.	٠	5.	•	6 ♦	٠	₹•,	•	8.♦		9.♦	٠	10	J		K •
	٠				٠			٠		٠	٠	•	•	٠	•	:	•)//	549	
		*	٠	ŧ,	٠	\$	•	•	♦ ţ	٠	¢ 🛊	٠	• 1	•	• *	è	• 6	¢•• أ	Final States		

13 vales

Two possible representations

1) 1 bit per card (52): bit corresponding to card set to 1

- "One-hot" encoding (similar to set notation)
- Drawbacks:
 - Hard to compare values and suits
 - Large number of bits required 52 bits fits in 7 bytes
- 2) 1 bit per suit (4), 1 bit per number (13): 2 bits set

<u></u>¢∇◊⊈ k (2 A

- Pair of one-hot encoded values
 4 suits 13 numbers 13 numbers 14 bits --> 3 bytes
- Easier to compare suits and values, but still lots of bits used

Two better representations

- 3) Binary encoding of all 52 cards only 6 bits needed
 - $2^6 = 64 \ge 52$ $2^5 = 32 \le 52$

suit

low-order 6 bits of a byte

value

- Fits in one byte (smaller than one-hot encodings)
- How can we make value and suit comparisons easier?
- 4) Separate binary encodings of suit (2 bits) and value (4 bits)
 - Also fits in one byte, and easy to do comparisons

К	Q	J	•••	3	2	Α
1101	1100	1011	• • •	0011	0010	0001
13			• • •			1

()()

01

1 ()

D

H

L04: Integers I

Compare Card Values

mask: a bit vector designed to achieve a desired behavior when used with a bitwise operator on another bit vector *v*.

```
char hand[5]; // represents a 5-card hand
char card1, card2; // two cards to compare
card1 = hand[0];
card2 = hand[1];
if (greaterValue(card1, card2)) { ... }
#define VALUE MASK OxOF
int greaterValue(char card1, char card2) {
  return ((unsigned int) (card1 & VALUE MASK)
          (unsigned int) (card2 & VALUE MASK));
          VALUE MASK = 0 \times 0F = 0 0 0
                                   0
                                       value
```

L04: Integers I

Compare Card Values

mask: a bit vector designed to achieve a desired behavior when used with a bitwise operator on another bit vector *v*.

Integers

***** Binary representation of integers

- Unsigned and signed
- Casting in C

Consequences of finite width representation

- Overflow, sign extension
- Shifting and arithmetic operations

Encoding Integers

The hardware (and C) supports two flavors of integers

- unsigned only the non-negatives
- signed both negatives and non-negatives
- Cannot represent all integers with w bits
 - Only 2^w distinct bit patterns $W \xrightarrow{8b, 4s}$
 - Unsigned values: $0 \dots 2^w 1$
 - Signed values: $-2^{w-1} \dots 2^{w-1} 1 \frac{28}{5a}$
- * Example: 8-bit integers (e.g. char)

-00				<u> </u>
-00 4	_128	Ο	⊥ 128	±256
	-120	0	± 120	+230
	-2^{8-1}	0	$+2^{8-1}$	+28

Unsigned Integers

- Unsigned values follow the standard base 2 system
 - $b_7b_6b_5b_4b_3b_2b_1b_0 = b_72^7 + b_62^6 + \dots + b_12^1 + b_02^0$
- ♦ Useful formula: $2^{N-1} + 2^{N-2} + ... + 2 + 1 = 2^{N} 1$ *i.e.* N ones in a row = $2^{N} 1$
- How would you make signed integers?

Most Significant Bit

- Designate the high-order bit (MSB) as the "sign bit"
 - sign=0: positive numbers; sign=1: negative numbers
- Benefits:
 - Using MSB as sign bit matches positive numbers with unsigned unsigned: $050010 = 2^{1} = 2$; sign + mag: $050010 = +2^{1} = 2$
 - All zeros encoding is still = 0
- Examples (8 bits):
 - \checkmark 0x00 = <u>00000000</u> is non-negative, because the sign bit is 0
 - 0x7F = <u>01111111</u> is non-negative (+127₁₀)
 - 0x85 = 10000101₂ is negative (-5₁₀)
 - 0x80 = 10000000₂ is negative... zero???

- MSB is the sign bit, rest of the bits are magnitude
- Drawbacks?

- MSB is the sign bit, rest of the bits are magnitude
- Drawbacks:
 - Two representations of 0 (bad for checking equality)

- MSB is the sign bit, rest of the bits are magnitude
- Drawbacks:
 - Two representations of 0 (bad for checking equality)
 - Arithmetic is cumbersome
 - Example: 4-3 != 4+(-3)

 Negatives "increment" in wrong direction!

Two's Complement

- Let's fix these problems:
 - 1) "Flip" negative encodings so incrementing works

Two's Complement

- Let's fix these problems:
 - 1) "Flip" negative encodings so incrementing works
 - 2) "Shift" negative numbers to eliminate –0
- MSB still indicates sign!
 - This is why we represent one more negative than positive number (-2^{N-1} to 2^{N-1} -1)

Two's Complement Negatives

Accomplished with one neat mathematical trick!

Why Two's Complement is So Great

- Roughly same number of (+) and (-) numbers
- Positive number encodings match unsigned
- Single zero
- All zeros encoding = 0
- Simple negation procedure:
 - Get negative representation of any integer by taking bitwise complement and then adding one!

$$(\chi x + 1 = -x)$$

·MSB

Peer Instruction Question

- * Take the 4-bit number encoding x = 0b1011
- Which of the following numbers is NOT a valid interpretation of x using any of the number representation schemes discussed today?
 - Unsigned, Sign and Magnitude, Two's Complement
 - Vote at <u>http://PollEv.com/rea</u>
 - A. -4
 unsigned: 8 + 2 + 1 = 11

 B. -5
 Sign + mag: $1011 \rightarrow -(2+1) = -3$

 C. 11
 $1011 \rightarrow -(2+1) = -3$

 D. -3
 $100'_{5}: -8 + 2 + 1 = -5$

 E. We're lost...
 $-x = 0b \ 0100 + 1 = 5 \rightarrow x = -5$

Summary

- Bit-level operators allow for fine-grained manipulations of data
 - Bitwise AND (&), OR (|), and NOT (~) different than logical AND (& &), OR (||), and NOT (!)
 - Especially useful with bit masks
- Choice of encoding scheme is important
 - Tradeoffs based on size requirements and desired operations
- Integers represented using unsigned and two's complement representations
 - Limited by fixed bit width
 - We'll examine arithmetic operations next lecture