W UNIVERSITY of WASHINGTON

LO4: Integers |

CSE351, Spring 2019

Data lll & Integers |

CSE 351 Spring 2019

Instructor:
Ruth Anderson

Teaching Assistants:

Gavin Cai

Jack Eggleston
John Feltrup
Britt Henderson
Richard Jiang
Jack Skalitzky
Sophie Tian

ALAIH, DONEHLN,
DONEHLINI, ALA'H,
ALATH, DONEHLI,
DONEHLINI, DONEHLINI,
ALAIH, ALAIH,
DONEHLINL - ALATH,
DONEHLINI, DONEHLINI,
DONEHLINY

FOR ADDED SECURITY, AFTER
WE ENCRYPT THE DATA STREAM,
WE SEND IT THROUGH QUR
NAVATO CODE TALKER.

... IS HE JUST USING
NAVATO WORDS FOR
'ZERY HND "ONE"?

WHOA, HEY, KEEP
YOUR U:m:E DOWN!

ﬁL

Connie Wang
Sam Wolfson
Casey Xing
Chin Yeoh

http://xkcd.com/257/

W UNIVERSITY of WASHINGTON LO4: Integers | CSE351, Spring 2019

Administrivia

+» Lab 0 due TODAY @ 11:59 pm
" You will be revisiting this program throughout this class!

+» Homework 1 due Wednesday
= Reminder: autograded, 20 tries, no late submissions

« Lab la released
= Workflow:

1) Editpointer.c

2) Run the Makefile (make) and check for compiler errors & warnings
3) Run ptest (. /ptest) and check for correct behavior

4) Run rule/syntax checker (python dlc.py) and check output

= Due Monday 4/15, will overlap a bit with Lab 1b

- We grade just your /ast submission

WA UNIVERSITY of WASHINGTON LO4: Integers | CSE351, Spring 2019

Lab Reflections

+ All subsequent labs (after Lab 0) have a “reflection”

portion

" The Reflection questions can be found on the lab specs and
are intended to be done after you finish the lab

" You will type up your responsesina . txt file for
submission on Canvas

" These will be graded “by hand” (read by TAs)

Intended to check your understand of what you
should have learned from the lab

" Also great practice for short answer questions on the exams

WA/ UNIVERSITY of WASHINGTON L04: Integers |

CSE351, Spring 2019

Memory, Data, and Addressing

+» Hardware - High Level Overview
+ Representing information as bits and bytes
= Memory is a byte-addressable array
" Machine “word” size = address size = register size
+» QOrganizing and addressing data in memory
" Endianness — ordering bytes in memory
+» Manipulating data in memory using C

+~ Boolean algebra and bit-level manipulations

WA UNIVERSITY of WASHINGTON LO4: Integers | CSE351, Spring 2019

Boolean Algebra

+ Developed by George Boole in 19th Century

= Algebraic representation of logic (True — 1, False — 0)
= AND: A&B=1 whenboth AislandBis1

= OR: A|B=1 wheneither AislorBis1
= XOR: A”B=1 when either Ais1 orBis 1, but not both

= NOT: ~A=1 when A is 0 and vice-versa
= DeMorgan’s Law: ~(A|B) = ~A & ~B
~(A&B) = ~A | ~B
AND OR XOR NOT

& |0 1 | |0 1 ~lo 1 ~
0|0 0 0|0 1 0|0 1 0|1

YA/ UNIVERSITY of WASHINGTON L04: Integers | CSE351, Spring 2019

General Boolean Algebras

+» Operate on bit vectors
= Operations applied bitwise
o Alli $f the properties of Boolean algebra apply

01101001 01101001 01101001

& 01010101 | 01010101 ~ 01010101 ~ 01010101
0100000! OV rrhior—opfirioo [0lo1olo

+» Examples of useful operations:

01010101
x*>x =0 ~ 101010101
T 7 \ p 00000000[<— crasfes O
x|1= 1 x|0=x 0101p101¢— Ao of interest
l1 Ol o= Q | 111100004__%{& v:f“]l(|)
1111j0101 echialy chaen
— Set |e-pf s 1% 6

WA UNIVERSITY of WASHINGTON

LO4: Integers |

Bit-Level Operations in C

o
%

. & (AND),

| (OR),

* (XOR),

CSE351, Spring 2019

" View arguments as bit vectors, apply operations bitwise

= Apply to any “integra
(Bbytes) (4 syles)
- long, 1nt,

I”

) (Lhyte)

data type

% byle .
short, char, unsigned

«» Examples with char a,

" a
b

Q O ® Q O W

code

= (char)

= (char)
= (char)

= a

& b;

= (char)

= a

/\b;

O0x41;

0x069;
0x55;

Ox41;

//
//

//
//
//

//
//
//

~ (NOT)
bit vector wil be
widdh of datadype
b, c;
T rternally Resutt
Ox41->0b 0100 0001 ~
Ob 1011 1110->0x BE
O0x69->0b 0110 1001
0x55->0b 0101 0101
Ob 0100 0001 ->0x 41
Ox41->0b 0100 0001
Ob 0100 0001
0b 0000 0000->0x 00

WA UNIVERSITY of WASHINGTON L04: Integers | CSE351, Spring 2019

Contrast: Logic Operations

+ Logical operatorsin C: && (AND), | | (OR), ! (NOT)

" 0is False, anything nonzero is True

OxCC = ObL 1o o0
= Always returnOor1 Ox33= 0Loo1 O

= Early termination (a.k.a. short-circuit evaluation) of &&, | |
% Examples(char data type) Ox(C & 0«33 —> 0x00

- 'OX4_1 -> OXOO - OXCC & & OX33 -> 0x01
= !OXOFO -> Oxgl - OXOO || OX33 -> 0x01
= 110x41) -> 0x01

- If pisthe null pointer (0x0), then p is never dereferenced!
I{ @ de"i’e/h’,nej Oqu\A_t (5‘ l%‘ml Q‘Rf(;db(’ 'ﬂ\en @ lS nevder e\ﬁl \}Q‘l-ed

W UNIVERSITY of WASHINGTON

Roadmap

LO4: Integers |

CSE351, Spring 2019

C: Java: Memory & data
car *c = malloc(sizeof (car)):; Car ¢ = new Car(); |r;3t6egers&t1:||0ats
c->miles = 100; c.setMiles (100); Xob assembly
c->gals = 17; c.setGals (17); Procedures & stacks
float mpg = get mpg(c); float mpg = Executables
free(c); c.getMPG () ; Arrays & structs
—Y / Memory & caches
Assembly get mpg: Processes
language: pushq Srbp Virtual memory
movq srsp, srbp Memory allocation
L o Java vs. C
PoprPa srbp
ret
‘b OS:
Machine 0111010000011000 \/
code: 100011010000010000000010 - \
' 1000100111000010 /\ |
110000011111101000011111 : 3
. Windows 10 ; 05 X Yosemite \A’
2 v
Computer

system:

W UNIVERSITY of WASHINGTON

LO4: Integers |

But before we get to integers....

Encode a standard deck of playing cards

52 cards in 4 suits
" How do we encode suits, face cards?

What operations do we want to make easy to implement?
= Which is the higher value card?

\ 2 (ahe S

= Are they the saW

ek 3

ia;&
> %

% bt

T
o4
4
¢ »

ZQ‘Q
oo
v v

<«
<

nrt 2
ek 2

Eq‘v
ve

a8

-
+
e o o |9 ¢

* o |9 € (€ P> P X P+

<+

Io’o
¢ ¢
LK M

CSE351, Spring 2019

-]
3

(=L]

EX-]
P

29¢¢ 00’00 o} o3 P

= 2

(=8]
4=
’0 << 0‘00

4|0

22 CC | CEDD (X3 bd
OOC‘C ¢<¢d

=} 2

N
¥,

L R B 2
A g

L B B 2

]

L & R 2

O+

* <@
L 2

o+

WA/ UNIVERSITY of WASHINGTON L04: Integers | CSE351, Spring 2019

Two possible representations

\C

ke 1) 1 bit per card (52): bit corresponding to card setto 1 L

IJIII
low-order 52 bits of 64-bit word

= “One-hot” encoding (similar to set notation)
" Drawbacks:

- Hard to compare values and suits
£ In

. ' ' 52 bits — >4 b
Large number of bits required 52 biTs (l:/}‘se)s

2) 1 bit per suit (4), 1 bit per number (13): 2 bits set

QLK @ A
A EEEEEEEEEEEEESEEE

i : 13 numbers
" Pair of one-hot encoded values IS S 2 btes

= Easier to compare suits and values, but still lots of bits used

11

WA UNIVERSITY of WASHINGTON

LO4: Integers |

Two better representations

CSE351, Spring 2019

3) Binary encoding of all 52 cards — only 6 bits needed
" 26 =64>52

27 = 12 <52

= Fits in one byte (smaller than one-hot encodings)

" How can we make value and suit comparisons easier?

low-order 6 bits of a byte

4) Separate binary encodings of suit (2 bits) and value

(4 bits)

suit

value

= Also fits in one byte, and easy to do comparisons

K

Q

J

3

2

A

1101

1100

1011

0011

0010

0001

13

=

nw F U N

00

01

10

2R BR SR _

11

12

WA UNIVERSITY of WASHINGTON LO4: Integers |

CSE351, Spring 2019

mask: a bit vector designed to achieve a desired
. behavior when used with a bitwise operator on
Compare Card Suits nother bit vector v.

Here we turn all but the bits of interest in vto 0.

char hand[5]; // rep
char cardl, card2; // tw
cardl = hand[0];
card2 = hand[1];

sents a b-card hand

cards to compare

i1f (sameSuitP (cardl,
+ext S\A\g,}*ﬁ \A"WV\

#define SUIT MASK (0x30

int sameSultP (char cardl,| char cardZ;-;s‘\\Eﬁ
eturn (! ((cardl & SUIT MASK) ~ (card2 & SUIT MASK)));

return (cardl & SUIT MASK) == (card? & SUIT MASK) ;

}

[;aturns int] SUIT MASK=0x30=[0]o[1]1]o[o]o]o0 \Lequivalent]
x 6&0=0 value

x & 1. =X C‘(egls (A\l)(QVA«) 13

W UNIVERSITY of WASHINGTON

LO4:

Compare Card Suits

Integers | CSE351, Spring 2019

mask: a bit vector designed to achieve a desired
behavior when used with a bitwise operator on

another bit vector v.

Here we turn all but the bits of interest in v to O.

#define SUIT MASK 0x30
int sameS itP(charCFardl char aﬁrd2
return (! ((cardl™& SUIT MASK) ardZC% SUIT MASK)));

//return (cardl & SUIT MASK) == (cardZ & SUIT MASK) ;
}
i e o=
cardl[0]0]0]|2|0|0O]1]|0O 0[0]0[21|1[1|0|1| cardl
D = &0
01011(1(10|0]|0|0 SUIT MASK |O0(0f1|1|10|0(0|Q
0{010[1]10]0]0]|0 xb&l=x 01010]1110]0]0]0
DA
010(0]0(0]0]0]0
e ;
[! (x"y) equivalent to x==y Ll; U! < (05 wl
010(0]0(0]0]0]|1

14

W UNIVERSITY of WASHINGTON L04: Integers |

mask: a bit vector designed to achieve a

desired behavior when used with a
Compare Card Values twi iy

bitwise operator on another bit vector v.

char hand[5]; // represents a 5-card hand

char cardl, card2; // two cards to compare
cardl = hand[0];

card?2 = hand[1l];

if (greaterValue(cardl, card2)) { ... }

#define VALUE MASK

int greaterValue (char car;:\\:;;;\card2) {

return ((unsigned 1int) (cardl \& VALUE MASK)<::>
(unsigned int) (card?2 3 VALUE MASK)

VALUE_MASK =0x0F ={0]|0|0|0j1]|1|1|1

suit value

(discard) (keer) 15

CSE351, Spring 2019

W UNIVERSITY of WASHINGTON L04: Integers |

CSE351, Spring 2019

mask: a bit vector designed to achieve a

desired behavior when used with a
Compare Card Values t

bitwise operator on another bit vector v.

#define VALUE MASK OxOF

int greaterValue (char cardl, char card2) { A
return ((unsigned int) (cardl® VALUE MASK) >
(unsigned int)(cardZCk VALUE MASK)) ;

¥
- %0 50\& __—
olotrTololol1]o0 / olorrlol|1f1]o]1
Y - T & @
ojo|o|of1|1|{1]|1| vaLur mMask |O|O|O|O1|2|1]|1
olololololol1]o0 oloflofol1l1]o]1
)

16

w UNIVERSITY of WASHINGTON L04: Integers | CSE351, Spring 2019

Integers

+ Binary representation of integers
= Unsigned and signed
" Castingin C

+» Consequences of finite width representation

= Qverflow, sign extension

+ Shifting and arithmetic operations

17

W UNIVERSITY of WASHINGTON LO4: Integers | CSE351, Spring 2019

Encoding Integers

+» The hardware (and C) supports two flavors of integers
" unsigned — only the non-negatives
= signed — both negatives and non-negatives

+» Cannot represent all integers with w bits |
= Only 2% distinct bit patterns w —— 7~ < b.4S

= Unsigned values: 0..2"-1 O . \21?6 !
= Signed values: —w-1 aw-l4 ﬁ\lg';;me widdhs,
st nifted

« Example: 8-bit integers (e.g. char)

+00

~128 0 +128 +256

18

WA/ UNIVERSITY of WASHINGTON LO4: Integers | CSE351, Spring 2019

Unsigned Integers

+ Unsigned values follow the standard base 2 system
" b7b6b5b4_b3b2b1b0 —_ b727 + b626 + .-+ b121 + b020

+» Add and subtract using the normal “carry” and
“borrow” rules, ju‘Ptzi(n binary

\ 22 (48

63 00117111) ¢ L5 1n 2von
+ 8| [+00001000 |

71 01000111

g: 2N=-1 4 2N=2 4 41241 =2N_1

= je. Nonesinarow=2N—1

+» How would you make signed integers?

19

W UNIVERSITY of WASHINGTON LO4: Integers | CSE351, Spring 2019

Sign and Magnitude

Most Significant Bit]

+ Designate the high-order bit (MSB) as the “sign bit”

" sign=0: positive numbers; sign=1: negative numbers

« Benefits:

= Using MSB as sign bit matches positive numbers with
unsigned wsigned - 0b 0010 = 2'=2 ; Signt magt Ob 0010 = ¥2'=2 E/

= All zeros encoding is still =0
+ Examples (8 bits):
V4 0x00 =.00000000, is non-negative, because the sign bit is 0
= Ox7F =01111111, is non-negative (+127,,)
= 0x85 = 10000101, is negative (-5,,)
= 0x80 = 10000000, is negative... zero???

20

CSE351, Spring 2019

LO4: Integers |

WA UNIVERSITY of WASHINGTON

Sign and Magnitude

« MSB is the sign bit, rest of the bits are magnitude

« Drawbacks?

encodin
1111 O

1110
1101

1100

0
0001
0010

0011

Sigi{\ and

Unsigned
11\ 1011 0100 [4

1010 0101
1001 0110
1000 0111

Magnitude

21

YA/ UNIVERSITY of WASHINGTON LO4: Integers | CSE351, Spring 2019

Sign and Magnitude

« MSB is the sign bit, rest of the bits are magnitude
«» Drawbacks:

= Two representations of 0 (bad for checking equality)
-7 +0

1111
1110
1101

1100

0000
0001
0010

0011

Sign and
Magnitude
_3\1011 & 0100 /, 4

1010
1001

1000 0111

22

WA UNIVERSITY of WASHINGTON L04: Integers | CSE351, Spring 2019

Sign and Magnitude

« MSB is the sign bit, rest of the bits are magnitude
«» Drawbacks:

= Two representations of 0 (bad for checking equality)

S5 INCcvessin
® Arithmetic is cumbersome \V\U\ee, \/alue
U
. Example: 4-3 != 4+ (-3) ¢ 1111 0000 “\{1

1110 0001

41 0100 41 0100 1101 0010 ;
- 3|- 0011 |+ -3|+ 1011 =4 [1100 Signand 0011 *
-3 + 4
v (X 1010
- Negatives “increment” in wrong -2 1001 +5
direction!

1000 0111

23

YA UNIVERSITY of WASHINGTON LO4: Integers | CSE351, Spring 2019

Two’s Complement

+ Let’s fix these problems:

1) “Flip” negative encodings so incrementing works

INCreasin 9
valwe
24

WA UNIVERSITY of WASHINGTON L04: Integers |

Two’s Complement

+ Let’s fix these problems:

1) “Flip” negative encodings so incrementing works
2) “Shift” negative numbers to eliminate -0

+» MSB still indicates sign!

" This is why we represent one
more negative than positive
number (-2V71 to 2N-1 —1)

CSE351, Spring 2019

YA/ UNIVERSITY of WASHINGTON LO4: Integers | CSE351, Spring 2019

Two’s Complement Negatives

+» Accomplished with one neat mathematical trick!

b,,_1 has weight —2%W~1, other bits have usual weights +2!

z/ I Y
by | by v b,
= | 4-bit Examples: _1q +0
Z
. 101d2 unsigned: 1111 0000
%/}’;2I3+O*22+£lj’2_1+0*20 =10 _3 1110 0001 +2
. lgla;tw’o’_s,campiement: 1101 0010
-1*23+0*224+1%214+0%20= -6 =4 (1100 TWo's oot1 * 3
Complement
" -1represented as: - 5|10 0100 /, 4

1010
1001
1000

2 one's _@‘lldw3 - 1) ~6

~ e o T MSB makes it super negative, add up
all the other bits to get back up to -1

0111

26

WA/ UNIVERSITY of WASHINGTON LO4: Integers | CSE351, Spring 2019

Why Two’s Complement is So Great

» Roughly same number of (+) and (=) numbers
+ Positive number encodings match unsigned

» Single zero

» All zeros encoding =0

0000
0001
0010

1111
1110
1101

» Simple negation procedure:

" Get negative representation =% [1100 Two's 0011 " 3
of any integer by taking _c\1011 Complement o149 |
bitwise complement and 1010
then adding one! -6\ 1001 +5
(xx + 1 == -x) 1000 0111

\ -8 +7

27

WA UNIVERSITY of WASHINGTON

LO4: Integers |

CSE351, Spring 2019

Peer Instruction Question

[I"\Sﬁ

+ Take the 4-bit number encoding x = 0b1011

+» Which of the following numbers is NOT a valid
interpretation of x using any of the number
representation schemes discussed today?

" Unsigned, Sign and Magnitude, Two’s Complement
= Vote at http://PollEv.com/rea

‘A- \ ums(ﬁheo\i g +)4+] = 11
B.—5

[EET Sign 4 mag _l_O\\——b—-(z,H)-:—S
D3 twols: =F +241=75

E. We’re lost... —x=0b O\DH(=5 — x=-5

28

YA/ UNIVERSITY of WASHINGTON LO4: Integers | CSE351, Spring 2019

Summary

+ Bit-level operators allow for fine-grained
manipulations of data

= Bitwise AND (&), OR (|), and NOT (~) different than logical
AND (&&), OR(] |), and NOT (!)

= Especially useful with bit masks

+ Choice of encoding scheme is important

" Tradeoffs based on size requirements and desired
operations

+ Integers represented using unsigned and two’s
complement representations
" Limited by fixed bit width
= We’ll examine arithmetic operations next lecture

29

