
2

Question M1: Numbers [16 pts]

(A) Briefly explain why we know that there may be data loss casting from int to float, but there

won’t be casting from int to double. [4 pt]

Explanation:
An int contains 32 bits of information, which always fits into the 52-bit mantissa of a
double, but not always into the 23-bit mantissa of a float.

(B) What value will be read after we try to store –2127 – 2104 in a float? (Circle one) [4 pt]

–2127 –NaN –∞ –2127–2104

–2127 – 2104 = –2127 ൈ 1.000000000000000000000012.

Exp = 127 is a representable normalized exponent (E = 0b11111110)

All of the bits following the binary point in the Mantissa fit into the M field (23 bits).

(C) Complete the following C function that returns whether or not a pointer p is aligned for data type

size K. Hint: be careful with data types! [4 pt]

int aligned(void* p, int K) {
 return !((long)p%K); // other variants accepted, e.g.
} // (long)p%K == 0

// (long)p == (long)p/K*K
// !((long)p & (K-1))

(D) Take the 32-bit numeral 0x50000000. Circle the number representation below that has the

most positive value for this numeral. [4 pt]

Floating Point Two’s Complement Unsigned
Two’s AND
Unsigned

float: S = 0, E = 0b1010 0000, M = 0, so +1.02ൈ233. You can recognize that this is larger

than TMax and UMax.

int/unsigned int: Positive encodings are the same for both representations. Value is

5ൈ167 = 230+228.

 Question M2: Design Question [4 pts]

(A) If the Stack grew upwards (e.g. we switched the positions of the Stack and Heap), which assembly

instructions would need their behaviors changed? Name two and briefly describe the changes.

There are 4 instructions that would need to be changed: push, pop, call, ret.

push and call would now need to increase %rsp.

pop and ret would now need to decrease %rsp.

18au Final

5 of 7

4. Pointers, Memory & Registers (14 points)

Assuming a 64-bit x86-64 machine (little endian), you are given the following variables and

initial state of memory (values in hex) shown below:

Address +0 +1 +2 +3 +4 +5 +6 +7

0x00 AB EE 1E AC D5 8E 10 E7

0x08 F7 84 32 2D A5 F2 3A CA

0x10 83 14 53 B9 70 03 F4 31

0x18 01 20 FE 34 46 E4 FC 52

0x20 4C A8 B5 C3 D0 ED 53 17

int* ip = 0x00;

short* sp = 0x20;

long* yp = 0x10;

a) Fill in the type and value for each of the following C expressions. If a value cannot be

determined from the given information answer UNKNOWN.

Expression (in C) Type Value (in hex)

yp + 2 long* 0x20

*(sp – 1) short 0x52FC

ip[5] int 0x31F40370

&ip int** UNKNOWN

b) Assuming that all registers start with the value 0, except %rax which is set to 0x4, fill in the

values (in hex) stored in each register after the following x86 instructions are executed.

Remember to give enough hex digits to fill up the width of the register name listed.

Register Value (in hex)

%rax 0x0000 0000 0000 0004

movl 2(%rax), %ebx %ebx 0x84f7 e710

leal (%rax,%rax,2), %ecx %ecx 0x0000 000c

movsbl 4(%rax), %edi %rdi 0x0000 0000 ffff fff7

subw (,%rax,2), %si %si 0x7B09

17sp Midterm

11

Question 6: Procedures & The Stack [24 pts.]
Consider the following x86-64 assembly and C code for the recursive function rfun.

// Recursive function rfun

long rfun(char *s) {

 if (*s) {

 long temp = (long)*s;

 s++;

 return temp + rfun(s);

 }

 return 0;

}

// Main Function - program entry

int main(int argc, char **argv) {

 char *s = "Yay!";

 long r = rfun(s);

 printf("r: %ld\n", r);

}

00000000004005e6 <rfun>:

 4005e6: 0f b6 07 movzbl (%rdi),%eax

 4005e9: 84 c0 test %al,%al

 4005eb: 74 13 je 400600 <rfun+0x1a>

 4005ed: 53 push %rbx

 4005ee: 48 0f be d8 movsbq %al,%rbx

 4005f2: 48 83 c7 01 add $0x1,%rdi

 4005f6: e8 eb ff ff ff callq 4005e6 <rfun>

 4005fb: 48 01 d8 add %rbx,%rax

 4005fe: eb 06 jmp 400606 <rfun+0x20>

 400600: b8 00 00 00 00 mov $0x0,%eax

 400605: c3 retq

 400606: 5b pop %rbx

 400607: c3 retq

18wi Final

UW Student ID: _ _ _ _ _ _ _

12

(A) How much space (in bytes) does this function take up in our final executable? [2 pts.]

(B) The compiler automatically creates labels it needs in assembly code. How many labels are used in

rfun (including the procedure itself)? [2 pts.]

(C) In terms of the C function, what value is being saved on the stack? [2 pts.]

(D) What is the return address to rfun that gets stored on the stack during the recursive calls (in hex)?

[2 pts.]

(E) Assume main calls rfun with char *s = "Yay!" and then prints the result using the printf

function, as shown in the C code above. Assume printf does not call any other procedure. Starting

with (and including) main, how many total stack frames are created, and what is the maximum depth

of the stack? [2 pts.]

Total Frames: 7 Max Depth: 6

main -> rfun(s) -> rfun(s+1) -> rfun(s+2) -> rfun(s+3) -> rfun(s+4)
 -> printf()

The recursive call to rfun(s+4), which handles the null-terminator in the string does create a

stack frame since we consider the return address pushed to the stack during a procedure call

to be part of the callee’s stack frame.

34 bytes

3

*s

0x4005fb

UW Student ID: _ _ _ _ _ _ _

13

(F) Assume main calls rfun with char *s = "Yay!", as shown in the C code. After main calls

rfun, we find that the return address to main is stored on the stack at address 0x7fffffffdb38. On
the first call to rfun, the register %rdi holds the address 0x4006d0, which is the address of the input
string "Yay!" (i.e. char *s == 0x4006d0). Assume we stop execution prior to executing the
movsbq instruction (address 0x4005ee) during the fourth call to rfun. [14 pts.]

For each address in the stack diagram below, fill in both the value and a description of the entry.

The value field should be a hex value, an expression involving the C code listed above (e.g., a
variable name such as s or r, or an expression involving one of these), a literal value (integer
constant, a string, a character, etc.), “unknown” if the value cannot be determined, or “unused” if
the location is unused.

The description field should be one of the following: “Return address”, “Saved %reg” (where reg is
the name of a register), a short and descriptive comment, “unused” if the location is unused, or

“unknown” if the value is unknown.

Memory Address Value Description

0x7fffffffdb48 unknown %rsp when main is entered

0x7fffffffdb38 0x400616 Return address to main

0x7fffffffdb30 unknown original %rbx

0x7fffffffdb28 0x4005fb Return address

0x7fffffffdb20 *s, “Y” Saved %rbx

0x7fffffffdb18 0x4005fb Return address

0x7fffffffdb10 *s, *(s+1), “a” Saved %rbx

0x7fffffffdb08 0x4005fb Return address

0x7fffffffdb00 *s, *(s+2), “y” Saved %rbx

4. (15 points) (x86-64 Assembly) This problem considers this assembly implementation of a C function
of the from long mystery(long x) { ... }

mystery:

movq $0, %rax

testq %rdi, %rdi

jle .L2

.L1:

addq %rdi, %rdi

addq $1, %rax

testq %rdi, %rdi

jg .L1

.L2:

ret

In parts (a)-(c) we ask you to modify the assembly code in ways that have no effect on the answers it
produces, i.e., it should perform the same overall computation after any of your changes.

(a) Give a use of a cmpq instruction that could be used instead of either of the testq instructions.

(b) Give a use of a shlq instruction could be used instead of one of the addq instructions and indicate
which instruction it is replacing.

(c) Suppose we replace the jle .L2 with jg .L1. Insert an additional instruction to complete this
change correctly: indicate what instruction you are adding and where.

Now we ask about what mystery is actually computing.

(d) Complete this description of what mystery computes with 1–2 English sentences: “It takes the
number in %rdi and returns...”.

(e) What is the largest number mystery could possibly return? Answer in base-10.

Solution:

(a) cmpq $0, %rdi
(b) shlq $1, %rdi for the first addq instruction

(c) Intended answer: ret or jmp .L2 needs to be added after this first jump, i.e., immediately before

.L1. But it also works to put [back] jle .L2 either before or after the .L1 or even before the
jg .L1, so that also receives full credit.

(d) It takes the number in %rdi and returns the number of times it needs to be doubled before the
repeated doubling produces a non-positive number. (If the original number was positive, this will be
due to overflow.) An alternate description is it returns 63 minus the bit position of the left-most 1-
bit in %rdi where the least-significant bit is position 0 and returning 0 if there is no 1-bit.

(e) 63

18sp Midterm

2. (12 points) (Struct Layout) Assume x86-64 and Linux and that all fields should be properly aligned.

(a) Consider this struct definition:

struct S {

int x;

int * p;

};

Do all of the following:

� Indicate what sizeof(struct S) would evaluate to.

� Draw the layout of the struct, indicating the size and offset of each field.

� For any padding, indicate whether it is in internal or external fragmentation.

(b) Repeat the previous problem for this struct definition:

struct S {

int x;

int * p;

int y;

};

(c) Repeat the previous problem for this struct definition:

struct S {

int * p;

int x;

int y;

};

Solution:

(a) size is 16 bytes;
x at offset 0 for 4 bytes,
then padding for 4 bytes (internal fragmentation),
then p at offset 8 for 8 bytes

(b) size is 24 bytes;
x at offset 0 for 4 bytes,
then padding for 4 bytes (internal fragmentation),
then p at offset 8 for 8 bytes,
then y at offset 16 for 4 bytes,
then padding for 4 bytes (external fragmentation)

(c) size is 16 bytes,
p at offset 0 for 8 bytes,
then x at offset 8 for 4 bytes,
then y at offset 12 for 4 bytes.
(No padding.)

18sp Final

6 Pointers, arrays and structs (10 points)

Consider the following variable declarations, assuming x86 64 architecture:

struct {

int a;

char b;

double c;

} struct_type;

struct_type* m;

struct_type n[2];

Fill in the following table:

C Expression Evaluates to? Resulting data type

m 0x10000000 struct type*

n 0x20000000 struct type*

&(m->a) 0x10000000 int*

&(m->b) 0x10000004 char*

&(m->c) 0x10000008 double*

sizeof(struct type) 16 size t (or int)

sizeof(*m) 16 size t (or int)

sizeof(m) 8 size t (or int)

&(n[0]) 0x20000000 struct type*

&(n[0].a) 0x20000000 int*

&(n[1].a) 0x20000010 int*

Some students answered ”pointer” or ”address” as the resulting data type. This was not specific enough to
receive full credit.

9 of 16

typedef Typo: the struct declara1on should have been a
typedef so that `struct_type`. As it was wri<en,
struct_type would be a variable of the unnamed
struct type.

15wi Final

2 of 9

1. Caches (11 points)

You are using a byte-addressed machine where physical addresses are 22-bits. You have a 4-way

associative cache of total size 1 KiB with a cache block size of 32 bytes. It uses LRU replacement and

write-back policies.

a) Give the number of bits needed for each of these:

Cache Block Offset: _____5______ Cache Tag: _____14________

b) How many sets will the cache have? ____8______

c) Assume that everything except the array x is stored in registers, and that the array x starts at address

0x0. Give the hit rate (as a fraction or a %) for the following code, assuming that the cache starts out

empty. Also give the total number of hits.

#define LEAP 1

#define SIZE 256

int x[SIZE][8];

... // Assume x has been initialized to contain values.

... // Assume the cache starts empty at this point.

for (int i = 0; i < SIZE; i += LEAP) {

 x[i][0] += x[i][4];

}

Hit Rate: ___2/3_______ Total Number of Hits: ____512______

d) If we increase the cache block size to 64 bytes (and leave all other factors the same) what would the

hit rate be?

Hit Rate: _____5/6_______ Total Number of Hits: _____640_______

e) For each of the changes proposed below, indicate how it would affect the hit rate of the code above

in part c) assuming that all other factors remained the same as they were in the original cache:

Change associativity from

4-way to 2-way: increase / no change / decrease

Change LEAP from

1 to 4: increase / no change / decrease

Change cache size from

1 KiB to 2 KiB: increase / no change / decrease

17sp Final

3 of 16

2. Caches – 35 pts total (14/A, 6/B, 15C)

A. You are given a direct-mapped cache of total size 256 bytes, with cache block size of

16 bytes. The system’s page size is 4096 bytes. The following C array has been

declared and initialized to contain some values:

int x[2][64];

i. How many sets will the cache have?

256/16 = 16 sets

ii. How many bits will be required for the cache block offset?

4 bits

iii. If the physical addresses are 22 bits, how many bits are in the cache tag?

22 – 4 – 4 = 14 bits

iv. Assuming that all data except for the array x are stored in registers, and that the

array x starts at address 0x0. Give the miss rate (as a fraction or a %) and total

number of misses for the following code, assuming that the cache starts out empty:

int sum = 1;

int i;

for (i = 0; i < 64; i++) {

sum += x[0][i] + x[1][i];

}

Miss Rate: ___100%___________ Total Number of Misses: ___128_________

v. What if we maintain the same total cache size and cache block size, but increase

the associativity to 2-way set associative. Now what will be the miss rate and total

number of misses of the above code, assuming that the cache starts out empty?

Miss Rate: ____25%_________ Total Number of Misses: ____32________

14au Final

 4 of 16

2. (cont.)

B. Given the following access results in the form (address, result) on an empty cache of

total size 16 bytes, what can you infer about this cache’s properties? Assume LRU

replacement policy. Circle all that apply.

(0, Miss), (8, Miss), (0, Hit), (16, Miss), (8, Miss)

a. The block size is greater than 8 bytes

b. The block size is less or equal to 8 bytes

c. This cache has only two sets

d. This cache has more than 8 sets

e. This cache is 2-way set associative

f. The cache is 4-way set associative

g. Using an 8 bit address, the tag would be 4 bits

h. Using an 8 bit address, the tag would be greater than 4 bits

i. None of the above

Block sizes will range from 1 to 8 bytes, thus the number of sets will range from 1 to 8.

All combos of block sizes and number of sets will use only 3 bits, leaving 5 bits for the

tag.

7 of 16

5. Processes – 10 pts
A) What is exec() used for? Give an example of when it is used.

exec replaces the current process’ code with the code for a different program. It is used
in the fork-exec model to get a child process to execute a program different than its
parent. The example we used in class was when the user types a command like ls at the
command line, the bash shell first forks a child process running bash and then calls
exec(ls) in the child to get it to run the ls program. Note: process and program are
two very different things! exec does not create processes, fork does that.

B) On a context switch, circle all of the following that would be saved:

TLB
contents

Stack
Pointer

Instruction
Cache
Contents

Heap
Contents

Register
Contents

Stack
Contents

Condition
Codes

The wording on this question was a little vague. Heap and Stack contents would need to be
preserved on a context switch – a process should not lose any of these! But they do not
necessarily need to be explicitly saved at the time of context switch. We counted it as o.k. if you
circled heap or stack.

C) Given the following C program:

void sunny() {
int n = 1;

if (fork() == 0) {
 n = n << 1
 printf("%d, ", n);
 n = n << 1
}
if(fork() == 0) {
 n = n + 700;
}
printf("%d, ", n);

};

Which of the following outputs are possible for this function (circle all that apply):

a. 2, 4, 1, 701, 704,

b. 1, 2, 4, 704, 701,

c. 2, 704, 4, 701, 1,

d. 701, 2, 704, 4, 1,

e. 1, 704, 2, 4, 701,

f. 2, 1, 704, 4, 701,

15au Final

6. Programs, processes, and processors (oh my!) (25 pts)
(a) Consider the following C code on the left (running on Linux), then give one possible output of running it.

Assume that printf flushes its output immediately. 
void oz() { 
 char * name = "toto\n"; 
 printf("dorothy\n"); 
 if (fork() == 0) { 

name = "wizard\n"; 
printf("scarecrow\n"); 
fork(); 
printf("tinman\n"); 
exit(0); 
printf("witch\n"); 

 } else { 
printf("lion\n"); 

 } 
 printf(name); 
}

(b) "Pay no attention to the man behind the curtain." We have seen several different mechanisms used to create
illusions or abstractions for running programs:

A. Context switch

B. Virtual memory

C. Virtual method tables (vtables)

D. Caches

E. Timer interrupt

F. Stack discipline

G. None of the above, or impossible.
For each of the following, indicate which mechanism above (A-F) enables the behavior, or G if the
behavior is impossible or untrue.

(i) ______ Allows operating system kernel to run to make scheduling decisions.

(ii) ______ Prevents buffer overflow exploits.

(iii) ______ Allows multiple instances of the same program to run concurrently.

(iv) ______ Lets programs use more memory than the machine has.

(v) ______ Makes recently accessed memory faster.

(vi) ______ Multiple processes appear to run concurrently on a single processor.

(vii) ______ Enables programs to run different code depending on an object’s type.

(viii)______ Allows an x86-64 machine to execute code for a different ISA. 

! of !9 16

dorothy

scarecrow

tinman

tinman

lion

toto

Possible output:

dorothy

lion

toto

scarecrow

tinman

tinman

E

G

B

B

D

A

C

G

16sp Final

Name: _______________________________

(c) Give an example of a synchronous exception, what could trigger it, and where the exception handler would
return control to in the original program.  
 
Page fault: triggered by access to virtual address not in memory, returns to the instruction that caused
the fault. 
 
Trap: used to for syscalls to do something protected by the kernel, returns to after the calling
instruction. 
 
 

(d) In what way does address translation (virtual memory) help make exec fast? Explain in less than 2
sentences. Hint: it may help to write down what happens during exec.  
 
Address translation is a form of indirection, it allows us to implement fork without copying the whole
process’s memory, and exec without loading the whole program into memory at once. 
 
 
 
 
 
 

(e) Which of the following can a running process determine, assuming it does not have access to a timer?
(check all that apply)

⃞ Its own process ID

⃞ Size of physical memory

⃞ Size of the virtual address space

⃞ L1 cache associativity

⃞ When context switches happen

(f) For each of the following, fill in what is responsible for making the decision:  
hardware ("HW"), operating system ("OS"), or program ("P").

(i) ______ Which physical page a virtual page is mapped to.

(ii) ______ Which cache line is evicted for a conflict in a set-associative cache.

(iii) ______ Which page is evicted from physical memory during a page fault.

(iv) ______ Translation from virtual address to physical address.

(v) ______ Whether data is stored in the stack or the heap.

(vi) ______ Data layout optimized for spatial locality

! of !10 16

X

X

OS

HW

OS

HW

P

P

4 of 9

3. Virtual Memory (9 points)

Assume we have a virtual memory detailed as follows:

 256 MiB Physical Address Space

 4 GiB Virtual Address Space

 1 KiB page size

 A TLB with 4 sets that is 8-way associative with LRU replacement

For the following questions it is fine to leave your answers as powers of 2.

a) How many bits will be used for:

 Page offset? _____10______

Virtual Page Number (VPN)? ____22_____ Physical Page Number (PPN)? ___18______

TLB index? _______2_________ TLB tag? _______20__________

b) How many entries in this page table?

222

c) We run the following code with an empty TLB. Calculate the TLB miss rate for data (ignore

instruction fetches). Assume i and sum are stored in registers and cool is page-aligned.

#define LEAP 8

int cool[512];

... // Some code that assigns values into the array cool

... // Now flush the TLB. Start counting TLB miss rate from here.

int sum;

for (int i = 0; i < 512; i += LEAP) {

 sum += cool[i];

}

TLB Miss Rate: (fine to leave you answer as a fraction) ____
𝟏

𝟑𝟐

17sp Final

9

Question F7: Virtual Memory [10 pts]

Our system has the following setup:

 24-bit virtual addresses and 512 KiB of RAM with 4 KiB pages

 A 4-entry TLB that is fully associative with LRU replacement

 A page table entry contains a valid bit and protection bits for read (R), write (W), execute (X)

(A) Compute the following values: [2 pt]

Page offset width __12__ PPN width __7__
Entries in a page table __212

__ TLBT width __12__

Because TLB is fully associative, TLBT width matches VPN. There are 2VPN width entries in PT.

(B) Briefly explain why we make the page size so much larger than a cache block size. [2 pt]

Take advantage of spatial locality and try to avoid page faults as much as possible.
Disk access is also super slow, so we want to pull a lot of data when we do access it.

(C) Fill in the following blanks with “A” for always, “S” for sometimes, and “N” for never if the

following get updated during a page fault. [2 pt]

Page table __A__ Swap space __S__ TLB _A/N_ Cache __S__
When the page is place in physical memory, the new PPN is written into the page table entry.

Swap space will get updated if a dirty page is kicked out of physical memory.

For this class, we say that the page fault handler updates the TLB because it is more efficient.

In reality not all do (OS does not have access to hardware-only TLB; instr gets restarted).

To update a PTE (in physical mem), you check the cache, so it gets updated on a cache miss.

(D) The TLB is in the state shown when the following code is executed. Which iteration (value of i)

will cause the protection fault (segfault)? Assume sum is stored in a register.

Recall: the hex representations for TLBT/PPN are padded as necessary. [4 pt]

long *p = 0x7F0000, sum = 0;
for (int i = 0; 1; i++) {
 if (i%2)

*p = 0;
 else

sum += *p;
 p++;
}

i = 513

Only the current page (VPN = TLBT = 0x7F0) has write access. Once we hit the next page

(TLBT = 0x7F1), we will encounter a segfault once we try to write to the page. We are using

pointer arithmetic to increment our pointer by 8 bytes at a time. One page holds 212/23 = 512

longs, so we first access TLBT 0x7F1 when i = 512. However, the code is set up so that we

only write on odd values of i, so the answer is i = 513.

TLBT PPN Valid R W X

0x7F0 0x31 1 1 1 0

0x7F2 0x15 1 1 0 0

0x004 0x1D 1 1 0 1

0x7F1 0x2D 1 1 0 0

16au Final

SID: __1234567___

11

Question F10: Memory Allocation [18 pts]

(A) In the following code, briefly identify the TWO memory errors. They can be fixed by changing

ONE line of code. [6 pt]

int N = 64;
double *func(double A[][], double x[]) {
 double *z = (double *) malloc(N * sizeof(float));
 for (int i = 0; i < N; i++) {

for (int j = 0; j < N; j++) {
z[i] = A[i][j] + z[i] * x[j];

}
 }
 return z;
}

Error 1: Wrong allocation size / buffer overflow – N*sizeof(float)

Error 2: Using uninitialized values – z[i] = A[i][j] + z[i] * x[j]

Line of code with fixes: double *z = (double *) calloc(N, sizeof(double));

(B) We are using a dynamic memory allocator on a 64-bit machine with an explicit free list,

4-byte boundary tags, and 16-byte alignment. Assume that a footer is always used. [6 pt]

Request return value block addr block size

internal
fragmentation
in this block

p = malloc(12); 0x610 0x_60C_ _32_ bytes _20_ bytes

Block starts a header size before the payload (returned addr). Minimum block size in explicit free

list is set by header+footer+2 pointers = 24 bytes, then aligned to 16-bytes: 32 bytes. Internal

fragmentation is size of block – payload size = 32 – 12 = 20 bytes.

(C) Consider the C code shown here. Assume that

the malloc call succeeds and that all variables

are stored in memory (not registers). In the

following groups of expressions, circle the one

whose returned value (assume just before

return 0) is the lowest/smallest. [6 pt]

Group 1: &bar &foo foo

Group 2: &foo main str

Group 3: bar &str &ZERO

#include <stdlib.h>
int ZERO = 0;
char* str = "cse351";

int main(int argc, char *argv[]) {
 int *foo = malloc(888);
 int bar = 351;
 free(foo);
 return 0;
}

7) &foo/&bar (Stack)

6) foo (Heap)

5) &ZERO/&str (Static Data)

4) str (Literals)

3) main (Code)

2) bar (351)

1) ZERO (0)

18au Final

 6 of 11

4. Memory Allocation (11 points total)

1 #include <stdlib.h>

2 float pi = 3.14;

3

4 int main(int argc, char *argv[]) {

5 int year = 2019;

6 int* happy = malloc(sizeof(int*));

7 happy++;

8 free(happy);

9 return 0;

10 }

a) [3 pts] Consider the C code shown above. Assume that the malloc call succeeds and happy

and year are stored in memory (not in a register). Fill in the following blanks with “<” or “>”

or “UNKNOWN” to compare the values returned by the following expressions just before

return 0.

&year ___>_____ &main

happy ___<_____ &happy

&pi ___<______ happy

b) [4 pts] The code above has two memory-related errors. Use the line numbers in the code to

describe what the errors are and where they occur.

Error #1: On line 6 we are requesting more memory than we need. We should be requesting

size of int (4 bytes), not size of int* (8 bytes). Alternatively we could have meant to declare

happy to be of type int** (a pointer to a pointer to an int) so that we would have needed 8

bytes to hold a pointer to an int.

Error #2: On line 8 we are calling free on a pointer that was not the one returned to us by

malloc. In line 7 we are incrementing happy (a pointer to an int that was returned to us by

malloc).

c) [2 pts] (Not related to code at top of page) Give one advantage that next fit placement policy has

over a first fit placement policy in an implicit free list implementation.

Next fit searches the list starting where the previous search finished. This should often be

faster than first fit because it avoids re-scanning unhelpful blocks. First fit always starts

searching at the beginning of the list. In an implicit free list this is particularly bad because

the “free” list actually contains all allocated blocks as well as free blocks. So starting from the

beginning of the list is likely to traverse many allocated blocks each time.

d) [2 pts] List two reasons why it would be hard to write a garbage collector for the C

programming language.

Reason #1: Pointers in C can point to a location other than the beginning of a block of

memory on the heap.

Reason #2: In C you can “hide” pointers e.g. by casting them to longs.

19sp Final

8. (11 points) (Java)

(a) For each course topic below that we studied using C, answer yes if the topic is directly relevant
in Java as well (else answer no).

i. Floating-point operations often produce small rounding errors that can compound over many
operations.

ii. Pointer arithmetic is scaled by the size of the pointed-to object.

iii. Using uninitialized data can lead to garbage results that depend on whatever happened to be
in that memory previously.

iv. Keeping your working set small helps improve the performance of memory operations in
general, without concern for the exact parameters of a machine’s memory hierarchy.

(b) Some of the safety checks that are performed in Java but not in C require extra data in memory,
i.e., fields that are part of Java data but not part of the analogous C data. For each of the
following, answer yes if Java needs such extra data to perform the operation (else answer no).

i. Throwing an ArrayIndexOutOfBoundsException if an array index is too large.

ii. Throwing a NullPointerException if the e in e.m() evaluates to null.

iii. Throwing a ClassCastException if the e in (Foo)e does not evaluate to an instance of Foo.

(c) Consider this Java code, which is part of a larger program.

class Foo {

int x;

boolean sameAsX(int y) { return y == this.x; }

boolean sameAs7(int y) { return y == 7; }

}

class Bar {

boolean whyNotBoth(Foo f, int z) {

return f.sameAsX(z) && f.sameAs7(z);

}

}

Your friend suggests that when compiling the method call f.sameAs7(z) above, the compiler can
optimize out the instruction that passes this as a procedure argument since the sameAs7 method
in Foo does not use it. Explain in roughly 1–2 sentences why this “optimization” is wrong.

Solution:

(a) i. yes

ii. no

iii. no

iv. yes

(b) i. yes

ii. no

iii. yes

(c) A subclass of Foo could override sameAs7 with a method that uses the this pointer and the first
argument to whyNotBoth could be an instance of this subclass. With the optimization, the callee
will not have the proper this pointer it needs.

18sp Final

