CSE 351 Section 3 – Integers and Floating Point

Welcome back to section, we're happy that you're here 😊

Signed Integers with Two's Complement

Two's complement is the standard for representing signed integers:

- The most significant bit (MSB) has a negative value; all others have positive values (same as unsigned)
- Binary addition is performed the same way for signed and unsigned
- The bit representation for the negative (additive inverse) of a two's complement number can be found by:

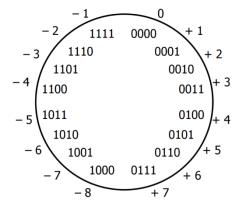
<u>flipping all the bits and adding 1</u> (i.e. -x = -x + 1).

The "number wheel" showing the relationship between 4-bit numerals and their Two's Complement interpretations is shown on the right:

- The largest number is 7 whereas the smallest number is -8
- There is a nice symmetry between numbers and their negative counterparts except for -8

Exercises: (assume 8-bit integers)

1) What is the **largest integer**? The **largest integer** + 1?



Unsigned:	Two's Complement:
1111 1111 -> 0000 0000	0111 1111 -> 1000 0000

2) How do you represent (if possible) the following numbers: **39**, **-39**, **127**?

Unsigned:	Two's Complement:
39: 0010 0111	39: 0010 0111
-39: Impossible	-39: 1101 1001
127: 0111 1111	127: 0111 1111

3) Compute the following sums in binary using your Two's Complement answers from above. Answer in hex.

											b. 127 ->									
+(-39)	->	dU	Т	Т	U	T	Т	U	U	T	+ (-39)->	au	T	T	U	Т	T	0	0	T
0x 0	<-	0b	0	0	0	0	0	0	0	0	0x 5 8 <-	0b	0	1	0	1	1	0	0	0
c. 39	->	0b	0	0	1	0	0	1	1	1	d. 127 ->	0b	0	1	1	1	1	1	1	1
											d. 127 -> + 39 ->									

4) Interpret each of your answers above and indicate whether or not overflow has occurred.

a. 39 + (-39)	b. 127 + (-39)
Unsigned: 0 overflow	Unsigned: 88 overflow
Two's Complement: 0 no overflow	Two's Complement: 88 no overflow
c. 39 + (-127)	d. 127 + 39
Unsigned: 168 no overflow	Unsigned: 166 no overflow
Two's Complement: -88 no overflow	Two's Complement: -90 overflow

Goals of Floating Point

Representation should include: [1] a large range of values (both very small and very large numbers), [2] a high amount of precision, and [3] real arithmetic results (*e.g.* ∞ and NaN).

IEEE 754 Floating Point Standard

The <u>value</u> of a real number can be represented in scientific binary notation as:

$Value = (-1)^{sign} \times Mantissa_2 \times 2^{Exponent} = (-1)^{S} \times 1.M_2 \times 2^{E-bias}$

The <u>binary representation</u> for floating point values uses three fields:

- **S**: encodes the *sign* of the number (0 for positive, 1 for negative)
- **E**: encodes the *exponent* in **biased notation** with a bias of 2^{w-1}-1
- M: encodes the *mantissa* (or *significand*, or *fraction*) stores the fractional portion, but does not include the implicit leading 1.

]	S	Е	М
float	1 bit	8 bits	23 bits
double	1 bit	11 bits	52 bits

How a float is interpreted depends on the values in the exponent and mantissa fields:

Е	М	Meaning
0	anything	denormalized number (denorm)
1-254	anything	normalized number
255	zero	infinity (∞)
255	nonzero	not-a-number (NaN)

Exercises:

Bias Notation

5) Suppose that instead of 8 bits, E was only designated 5 bits. What is the bias in this case?

 $2^{(5-1)} - 1 = 15$

6) Compare these two representations of E for the following values:

Exponent		E	(5 bi	its)					E (8	bits)		
1	1	0	0	0	0	1	0	0	0	0	0	0	0
0	0	1	1	1	1	0	1	1	1	1	1	1	1
-1	0	1	1	1	0	0	1	1	1	1	1	1	0

Notice any patterns?

The representations are the same except the length of number of repeating bits in the middle are different.

Floating Point / Decimal Conversions

7) Convert the decimal number 1.25 into	single precision floating point rep	resentation:
0 0 1 1 1 1 1 1 1 0 1 0	0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0
8) Convert the decimal number -7.375 in	to single precision floating point r	epresentation:
1 1 0 0 0 0 0 0 1 1 1	0 1 1 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0
9) Add the previous two floats from exer Convert that number into single preci	e	= -6.125
1 1 0 0 0 0 0 0 1 1 0	0 0 1 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0
10) Let's say that we want to represent ta. Convert this number to into single	he number 3145728.375 (2^21 + 2 e precision floating point represent	
	0000000000limitation of floating point represe0. Not enough bits in the mantissa to	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
11) What are the decimal values of the fol	lowing floats?	
0x80000000	0xFF94BEEF	0x41180000
-0	NaN	+9.5

0x41180000 = 0b 0|100 0001 0|001 1000 0...0.S = 0, E = $128+2 = 130 \rightarrow Exponent = E - bias = 3$, Mantissa = 1.0011_2 $1.0011_2 \times 2^3 = 1001.1_2 = 8 + 1 + 0.5 = 9.5$

Floating Point Mathematical Properties

- Not <u>associative</u>: $(2 + 2^{50}) 2^{50} ! = 2 + (2^{50} 2^{50})$
- Not <u>distributive</u>: $100 \times (0.1 + 0.2) = 100 \times 0.1 + 100 \times 0.2$
- Not <u>cumulative</u>: $2^{25} + 1 + 1 + 1 + 1 = 2^{25} + 4$

Exercises:

12) Based on floating point representation, explain why each of the three statements above occurs.

Associative:	Only 23 bits of mantissa, so $2 + 2^{50} = 2^{50}$ (2 gets rounded off). So LHS = 0, RHS = 2.
<u>Distributive</u> :	0.1 and 0.2 have infinite representations in binary point $(0.2 = 0.\overline{0011}_2)$, so the LHS and RHS suffer from different amounts of rounding (try it!).
<u>Cumulative</u> :	1 is 25 powers of 2 away from 2^{25} , so $2^{25} + 1 = 2^{25}$, but 4 is 23 powers of 2 away from 2^{25} , so it doesn't get rounded off.

13) If x and y are variable type float, give two *different* reasons why (x+2*y) - y==x+y might evaluate to false.

(1) Rounding error: like what is seen in the examples above.

(2) Overflow: if x and y are large enough, then x+2*y may result in infinity when x+y does not.