
CSE	351	Section	2	–	Pointers	and	Bit	Operators	
Pointers	
A	pointer	is	a	variable	that	holds	an	address.	C	uses	pointers	explicitly.		If	we	have	a	variable	x,	then	&x	gives	the	
address	of	x	rather	than	the	value	of	x.	If	we	have	a	pointer	p,	then	*p	gives	us	the	value	that	p	points	to,	rather	
than	the	value	of	p.	

Consider	the	following	declarations	and	assignments:	
 int x;
 int *ptr;
 ptr = &x;

1) We	can	represent	the	result	of	these	three	lines	of	code	visually	as	shown.	
The	variable	ptr	stores	the	address	of	x,	and	we	say	“ptr	points	to	x.”	
x	currently	doesn’t	contain	a	value	since	we	did	not	assign	x	a	value!	

2) After	executing		x = 5;,	the	memory	diagram	changes	as	shown.	

3) After	executing		*ptr = 200;,	the	memory	diagram	changes	as	shown.	
We	modified	the	value	of	x	by	dereferencing	ptr.

Pointer	Arithmetic	
In	C,	arithmetic	on	pointers	(++,	+,	--,	-)	is	scaled	by	the	size	of	the	data	type	the	pointer	points	to.		That	is,	if	p	is	
declared	with	pointer	type* p,	then	p + i		will	change	the	value	of	p	(an	address)	by	i*sizeof(type)	(in	
bytes).		However,	*p	returns	the	data	pointed	at	by	p,	so	pointer	arithmetic	only	applies	if	p	was	a	pointer	to	a	
pointer.	

Exercise:	
Draw	out	the	memory	diagram	after	sequential	execution	of	each	of	the	lines	below:	

 int main(int argc, char **argv) {
 int x = 410, y = 350; // assume &x = 0x10, &y = 0x14
 int *p = &x; // p is a pointer to an integer
 *p = y;
 p = p + 4;	
 p = &y;	
 x = *p + 1;
 }

Line	1:		 Line	2:	 Line	3:	

Line	4:	 Line	5:	 Line	6:	

1)	
	
	
	
2)	
	
	
	
3)	

y

350

x

410

y

350

x

410

p

0x10

y

350

x

350

p

0x10

y

350

p

0x20

y

350

x

350

p

0x14

y

350

x

351

p

0x14

x

350

C	Bitwise	Operators	
& 0 1 ←	 AND	(&)	outputs	a	1	only	when	both	input	bits	are	1.	 | 0 1
0 0 0 	 	 0 0 1
1 0 1 	 OR	(|)	outputs	a	1	when	either	input	bit	is	1.	 → 1 1 1
 	 	
^ 0 1 ←	 XOR	(^)	outputs	a	1	when	either	input	is	exclusively	1.	 ~
0 0 1 	 	 0 1
1 1 0 	 NOT	(~)	outputs	the	opposite	of	its	input.	 → 1 0

Masking	is	very	commonly	used	with	bitwise	operations.		A	mask	is	a	binary	constant	used	to	manipulate	another	
bit	string	in	a	specific	manner,	such	as	setting	specific	bits	to	1	or	0.	

Exercises:	
1) What	happens	when	we	fix/set	one	of	the	inputs	to	the	2-input	gates?		Let	x	be	the	other	input.			

Fill	in	the	following	blanks	with	either	0,	1,	x,	or	x̅	(NOT	x):	

 x & 0 = _0____ x | 0 = __x___ x ^ 0 = __x___

 x & 1 = _x____ x | 1 = __1___ x ^ 1 = __	x̅___

2) Lab	1	Helper	Exercises:		Lab	1	is	intended	to	familiarize	you	with	bitwise	operations	in	C	through	a	series	of	
puzzles.		These	exercises	are	either	sub-problems	directly	from	the	lab	or	expose	concepts	needed	to	complete	
the	lab.		Start	early!	

Bit	Extraction:		Returns	the	value	(0	or	1)	of	the	19th	bit	(counting	from	LSB).		Allowed	operators:		>>,	&,	|,	~.	
	
 int extract19(int x) {
 return (x >> 18) & 0x1;
 }	
Subtraction:		Returns	the	value	of	x–y.		Allowed	operators:		>>,	&,	|,	~,	+.	
	
 int subtract(int x, int y) {
 return x + ((~y) + 1);
 }	
Equality:		Returns	the	value	of	x==y.		Allowed	operators:		>>,	&,	|,	~,	+,	^,	!.	
	
 int equals(int x, int y) {
 return !(x ^ y);
 }	
Divisible	by	Eight?		Returns	the	value	of	(x%8)==0.		Allowed	operators:		>>,	<<,	&,	|,	~,	+,	^,	!.	
	
 int divisible_by_8(int x) {
 return !((x << 29);
 }	
Greater	than	Zero?		Returns	the	value	of	x>0.		Allowed	operators:		>>,	&,	|,	~,	+,	^,	!.	

 int greater_than_0(int x) {
 /*	invert	and	check	sign;	we	need	the	third	operand	for	the	T_min	case	*/
 return ((~x	+	1)	>>	31)	&	0x1	&	~(x	>>	31)_OR_!!x	&	~(x	>>	31);
 }	

	

