CSE 351 Lecture 17 — Memory & Caches I

The Memory Hierarchy A
Caches are one tier of a larger classification of Smaller,
the main forms of computer storage known as faSttT'r'

. P costlier
the memory hierarchy. This includes both local per byte
data storage (e.g. registers and RAM) and off-chip L2 Larger
remote/external data storage (e.g. web servers). cache (SRAM) slower,
Each level of the hierarchy can be thought of main memory cheabper
conceptually as a “cache” of the level below it — (DRAM) per byte

a faster way to access a subset of the available / local secondary storage \ L

data from the level below. Faster storage (local disks)
technologies almost always cost more per byte / remote secondary storage \

and therefore are used in lower capacities, which (distributed file systems, web servers)

matches the design of the memory hierarchy.

When programs exhibit good locality, we gain benefits from both ends of the hierarchy: we have access
to the storage capacity of the lower levels at an average access time closer to those of the higher levels.

Cache Terminology (Incomplete)

Last lecture, we introduced the notion of a block, which is a machine-specific fixed unit of transfer
between a cache and the storage level below. Block size (K) refers to how many bytes there are in each
block, which is always a power of 2.

Note: The textbook uses B for block size instead of K, but we want to avoid confusion with the
standard shorthand for bytes (e.g. K = 32 B means the block size is 32 bytes).

The cache size (C) measures the capacity of the cache and is defined to be the amount of program data
that the cache can store — we’ll see that additional management information is stored to ensure proper
cache operation but is not counted in the cache size. Cache size is always a multiple of block size, so is
sometimes given in terms of bytes (C) or in terms of blocks (C/K).

We will introduce more cache terminology in the next lecture, so this is currently an incomplete picture.

Direct-Mapped Cache Placement

Because we can only hold a subset of the data from the storage level below, we must decide where to
place blocks on a cache miss, which will also affect where we look for blocks on a cache access. Ideally,
we want to make this decision fast, in order to reduce our average memory access time by reducing our
hit time (looking during a cache access) and miss penalty (placing during a cache miss).



The first placement strategy that we will look at is known as direct-mapped, where we use a simple hash
function of modulus by the number of blocks the cache can hold (i.e. mod (C /K)) to determine where in
the cache to place that specific block, giving us a very fast algorithm that also utilizes every spot in our
cache. Notice that this is a deterministic placement — the cache access (i.e. the requested address) will
always hash to the same spot. This means that we don’t need a special replacement policy — we always
kick out the existing block in that spot.

Note: For modulus and bits, note that x% (2~n) returns the value of the lowest n bits of x. This is a

very important fact for the understanding of the mechanics of memory accesses.

Direct-Mapped Memory Address Breakdown

So how do we perform a direct-mapped cache access? The access takes the form of a memory address
(a word-sized number that we now define to be m bits wide). We know that blocks contain K bytes of
contiguous memory that don’t overlap (i.e. no two blocks contain the data from the same address).
Each block contains the data for K addresses, so we need k = log, K bits to represent each byte within
a block (this is equivalent to the address modulo K). So, the upper m — k bits tell us which block
number our request lives in and the lower k bits tells us the block offset — where within the block our
address lies:
m — k bits k bits
m-bit address: Block Number Block Offset

Since we transfer data into the cache in blocks (i.e. all bytes with the same block number different block
offset move together), our placement policy maps our block number to a specific place in the cache,
which we will call a cache index. Since our cache holds C /K blocks, there are § = C/K indices in a
direct-mapped cache, meaning we need s = log, S = log, (C/K) bits of our address to represent each
possible index. More specifically, since we’re mapping block number to index, our direct-mapped
hashing function is (block number) mod S, meaning we use the lowest s bits of our block number to
determine which index to place that block.

Finally, since multiple blocks map into the same cache index, we use the rest of the address as a cache
tag, an identifier to uniquely indicate which cache block is stored. Note that the tag bits are actually
stored as part of the management information in the cache. So, we can determine the placement of a
block from reading specific fields of the access address:

bits s bits k bits
m-bit address: Tag Index Offset
(refers to a byte in memory) v v v
Used for Selects Selects the
tag comparison the index byte from block

Example: If we had 8-bit addresses (m = 8), 4-byte blocks, and a cache size of 32 bytes, that means that
K =4 bytes, k =2 bits, C =32 B, S5 =C/K =8 indices, s = 3 bits,and t =8 - 3 - 2 = 3 bits.
A request for the address OxAA checks index 2 for block number 42 because OxAA = 0b101|010]10.



