
CSE 351 Lecture 16 – Memory & Caches I
IEC Prefixes

With the rapid growth of computing, we often need to specify very large powers of 2. The standard
prefixes such as kilo-, mega-, and
giga- unfortunately mean different
things in different contexts. In the SI
system, they mean powers of 101000. When talking about computer-
related quantities, they often instead
refer to powers of 2 1024. To
avoid this confusion, the IEC prefixes
unambiguously refer to powers of 1024.

The names come from shortened versions of the original SI prefixes and “bi” is short for “binary,” but
pronounced “bee.” Because the binary prefixes are powers of 2 , we can convert as follows:

2XY “things” =

Y = 0 → 1
Y = 1 → 2
Y = 2 → 4
Y = 3 → 8
Y = 4 → 16
Y = 5 → 32
Y = 6 → 64
Y = 7 → 128
Y = 8 → 256
Y = 9 → 512

+

X = 0 →
X = 1 → Kibi-
X = 2 → Mebi-
X = 3 → Gibi-
X = 4 → Tebi-
X = 5 → Pebi-
X = 6 → Exbi-
X = 7 → Zebi-
X = 8 → Yobi-

+ “things”

Examples: 2 bits = 4 Kibi-bits
 To hold 13.2 TiB of memory, you would need a 44-bit address space (2 16 TiB).

Caches and Cache Mechanics

We know that accessing memory is very slow compared to accessing registers. To help mitigate this
issue, we introduce an intermediate level of caches (abbreviated as ‘$’), which consist of memory with
short access time used to store frequently or recently used data (including instructions). Caches hold a
small subset of the data in memory, but are much faster to access (though slower than accessing
registers). Data is transferred between caches and memory in blocks, which are machine-specific fixed
units of transfer much larger than a word.

When accessing memory, the CPU will always check the caches first. When the data we are looking for
are found there, it is called a cache hit and the data are returned quickly. When the data we are looking
for are not found in the caches, it is called a cache miss and we must fetch the data from memory and
copy it into the cache. Depending on the current state of the cache, we will invoke the cache’s
placement and/or replacement policies to determine where the block will go in the cache.

Principle of Locality

Caches can greatly improve the performance of memory accesses due to the principle of locality, which
states that programs tend to use data at addresses equal to or near those that have been used recently.
Separating these two related scenarios further, temporal locality states that recently referenced items
are likely to be reference again in the near future while
spatial locality states that items with nearby addresses
tend to be referenced close together in time.

We take advantage of temporal locality by copying data
into the cache on a cache miss, so that future accesses
to that data will result in cache hits. For example, a local
variable stored on the stack often gets accessed multiple times in quick succession during the execution
of that function. We take advantage of spatial locality by bringing not just the referenced data, but an
entire block’s worth of data into the cache on a cache miss. For example, when traversing an array, a
block of memory typically will contain many elements of the array so that after one cache miss, the next
array accesses will be cache hits even though it is our first time accessing those elements.

Cache Performance Metrics

More than just saying that caching improves our program’s performance, we can use performance
metrics to see its effects! On a hit, we check the cache and then return the data to the CPU, on a miss,
we additionally have to fetch the block of data from memory. Based on these mechanics, we define the
following performance parameters:

• Hit Time (HT): How long a cache hit takes – the time to check the cache and return data to the
CPU. This parameter is based on the cache hardware.

• Miss Penalty (MP): How long it takes to fetch a block of data from memory. This parameter is
based on the cache and memory hardware.

• Hit Rate (HR)/Miss Rate (MR): The fraction of your code’s memory accesses that result in a
cache hit/miss. HR + MR = 100% by definition. These parameters are based on your code.

The performance metric we will use is called Average Memory Access Time (AMAT), which is defined as:
 Average Memory Access Time Hit Time Miss Rate Miss Penalty

Multilevel Caching

We won’t cover any details, but modern systems typically use multiple levels of cache, with each
successive level sitting “lower” (i.e. closer to memory) and being larger and slower to access. Everything
discussed here applies at each level of cache. Block size may differ between different levels. A memory
access can miss in one level and then hit in the next, causing the block to be copied into the higher level.
AMAT, however, is compute for your overall system caching, taking all levels of cache into account.

Temporal Locality:

blocks in cache

Spatial Locality:
data accessed

