CSE 351 Lecture 14 — Structs & Alignment

Structs and Typedef in C

A struct in Cis a user-defined, structured group of variables. struct struct tag |

A struct definition is formatted as shown on the right: type 1 field 1;

The user-chosen struct tag is part of the name of the new data type we T .
type_N field N;

are defining, which is struct struct tag (two-part name). The struct |

tag can be omitted if you don’t need to use this data type name

elsewhere in your code or you immediately typedef it. The struct name

can only be used in code after the struct definition (and when it is in scope). Typically, a struct definition
will appear like the example above at the top of a file in the global scope, but it is possible to combine a
struct definition with variable declarations (and initialization). Not recommended, but you may
encounter code that looks like the following on occasion:

struct {int x; int y;} var; # Declares a variable var of an unnamed struct

type that contains two integers x and y.
struct point { # Defines the type struct point that contains
int x; # two integers x and y, but also declares an

int y; # instance of the struct (pt) and a pointer to
} pt, *ptr; struct point (ptr).

The purpose of the struct definition is so that your compiler/program knows the size and layout of an
instance of the struct. A struct holds an arbitrary collection of struct fields of different variable types.
The only exception is that a struct cannot hold an instance of itself — how much space would be
allocated for it? — but a pointer of the struct type is okay. Fields are accessed from an instance using the
‘.’ operator (e.g. pt . x) or from a pointer by either (1) dereferencing and using *.’ or (2) using the ‘->’
operator (i.e. ptr->y is equivalentto (*ptr) .y).

The two-word struct data type names (struct struct tag)are a bit cumbersome so we often
combine them with typede£, which allows you to create aliases to other data types such as:

typedef unsigned int uint; # typedef <data type> <alias>,

For structs, a typedef statement can be used after or combined with the struct definition to make a
more manageable data type:

typedef after definition
struct point st {

int x;

int y;
bi
typedef struct point_st Point;
Point ptl;

typedef combined with definition

typedef struct { # tag now

int x; # optional
int y;

} Point;

Point ptl;

Alignment

The size and layout of a struct instance in C is determined by (1) the user-defined ordering of the struct
fields and (2) alignment requirements. As a reminder, a primitive object of size K bytes in memory is
considered aligned if its address is a multiple of K.

The layout of the struct in memory is determined by the compiler. It will follow the ordering of the
fields in the definition of the struct but insert padding between fields to make sure that each individual
field is aligned. For example, if the struct (theoretically) started at address 0x0, and the first two fields
are a short followed by an int, then the short would be placed at address 0x0 (multiple of 2), but
there would be 2 bytes of padding before the int would be placed at address 0x4 (multiple of 4). This
unused space (padding) between fields is known as internal fragmentation.

Note: For arrays, notice that the contiguous allocation guarantees that each element will be K
bytes after the previous one. This means that as long as the array starts at a multiple of K,
every element will be properly aligned, so the alignment requirement for an array is the size

of an individual element and not the size of the whole array (i.e K instead of n X K).

The overall size of a struct is also subject to alignment requirements. This is to guarantee that the
individual fields are properly aligned (e.g. we relied on starting at Ox0 in the example above) and that
consecutively-allocated structs (i.e. in an array) also are properly aligned. The alighment requirement on
the overall size of the struct is the alignment requirement of its largest field, i.e. Kmax = max(K;) for all
fields in the struct. After placing each field of the struct, additional padding is added, if necessary, to the
end of the struct to make the size of the struct a multiple of Kmax. This unused space (padding) between
struct instances is known as external fragmentation.

As a more complete example, take the following struct: et Bene |

The field alignment requirements are: Kc=1, Ki=4,K,=8, K;= 2. char c;

The overall struct alignment requirement is Kmax = 8 (from K). int i[3];
struct frag *p;

This means that the address of £ (the value stored in £p) will be a multiple short s;

of 8. Then c will be properly aligned at £p+0 and 3 bytes of internal } £, *fp = &f;

fragmentation will be added so that i starts at fp+4, which is a multiple of
4. After 12 bytes of the array i, p can be placed at £fp+16 without any padding because it is a multiple
of 8. s can be placed at £p+24, which brings the current end of the struct to fp+26. Since we need the
size to be a multiple of 8, we add 6 bytes of external fragmentation to bring the final struct size to 32

bytes:
@ 1[0] i[1] 1i[2] v 5]
fp+0 fo+4 fp+16 fp+24 4 fp+32
A . . . f +26 S
L multiple of 4 multiple of 8 -1 multiple of 2 -1 °
internal fragmentation external fragmentation
multiple of 8 multiple of 8

By clever choice of field ordering, sometimes a programmer can reduce the size of each struct instance!

