
CSE 351 Lecture 13 – Executables & Arrays
Compiling, Assembling, Linking, and Loading (CALL)

The process of building an executable from C source files is called compilation, which actually has three
distinct phases: compiling, assembling, and linking. A standard compiler (e.g. gcc) command on our
source code does all three phases
consecutively, but we can ask gcc to stop
at an intermediate phase if needed or
desired. This process is designed to allow
us to build a single executable from
multiple source files (and libraries).
Starting a process from an executable is
known as loading.

The compiler will translate a text file (i.e.
the bytes are meant to be interpreted as characters) of source code into a text file of assembly. In C, the
first part of this is a preprocessor step that handles preprocessor directives (commands that start with
‘#’ like #include and #define) – take CSE 333 to learn more. The rest is a complicated process in
interpreting the semantic meaning of the source code and writing assembly code that achieves the
desired behavior – take CSE 401 to learn more. You can optionally supply compiler optimization flags to
gcc to specify certain attributes that you would like in your assembly code. Common gcc optimization
flags optimize for code performance (-O1, -O2, -O3), compilation time (-O0), code size (-Os), or
debugging (-Og). The output will vary based on compiler version, settings, and flags.

The assembler will convert a text file of assembly code into a binary object file. There are different
formats for object files, but they will contain object code, which is incomplete machine code, and
information tables. In particular, the object code is “incomplete” because we lack the addresses
associated with our labels of the finalized executable; the object file will contain the bytes for the
instructions, static data, and literals found in your original source file, but they need to be patched up
later once all addresses become known. In order to do the patching, we create two information tables
in our object file: the symbol table, which hold the list of globally-accessible labels (e.g. function names,
global variables) and the relocation table, which holds the list of addresses to be patched.

The linker will stitch together all the object and static library files needed to produce the final
executable. Each object file contains its own symbol table, relocation table, data segment, and
instructions, so they are combined into a larger,
complete data and code segments for the executable.
References are resolved by running through each
relocation table (i.e. what addresses it needs) and
finding the corresponding entry in a symbol table (i.e.
what address it has) from any of the object files being
linked.

The loader will take an executable and set up its memory sections and initialize the register values. This
is primarily handled by the operating system and will be covered more later during Processes.

Arrays in Assembly

Declaring an array T ar[N]; is guaranteed to allocate enough contiguous space to hold the specified N
elements of size sizeof(T). Separate array declarations are not guaranteed to be adjacent. The name
of an array (ar) is actually just a label in assembly that represents the address of the array. Array
subscript notation is just syntactic sugar for address dereferencing: ar[i] ↔ *(ar+i) ↔ Mem[ar +
i*sizeof(T)], which we know can be conveniently specified in an x86-64 memory operand:

1) (Rb, Ri, S) – with Reg[Rb] = an address, Reg[Ri] = the index, and S = sizeof(T)
2) D(,Ri,S) – with D = an array name/label, Reg[Ri] = the index, and S = sizeof(T)

Note that since an array name is just an assembly label (constant), we can use it as the displacement.

Multidimensional and Multilevel Arrays

A multidimensional array is still a contiguous chunk of memory big enough to hold all of the necessary
elements. C utilizes row-major ordering, placing consecutive elements in each row next to each other.
An N-dimensional array requires N subscripts to access an individual element; fewer subscripts will
return the address of a larger conceptual element (e.g. in a 2D array ar, ar[r][c] returns an element,
ar[r] returns the address of row r and ar returns the address of the matrix). Accessing an element is
done by an address calculation followed by a single memory access.

A multilevel array is created by adding extra levels of arrays of pointers to arrays. Each individual array
is guaranteed to use contiguous memory, but allocating the extra levels takes up more space in total and
adds an extra memory access per level.

