CSE 351 Lecture 9 — x86 Programming Il

Address Computation Instruction (1ea)

Because sometimes we don’t want to dereference a memory operand and want to use the address
instead, we have one special instruction in x86-64 known as load effective address (1ea). Its source
operand must be a memory operand and its destination operand must be a register operand:

D7

lea D(Rb,Ri,S), R # stores Reg[Rb]+Reg[Ri]*S+D in Reqg[R]

-

This is the ONLY instruction that does NOT dereference its memory operand —instead just using the
computed address as the result. As the name suggests, its result does not have to actually be used as an
address (it’s an “effective address”), so 1ea can be used to perform arithmetic computations that fit the
address calculation format. For example, take the instruction:

Example: lea (%rdi,%rsi,4), Srax # x in %rdi, vy in $%rsi, z 1in $%rax

e Ifwehave int* xand long vy, then thisisequivalentto int* z &x[y]:

e |Ifwehave long xand long vy, then thisis equivalentto long z = x + 4*y;

Condition Codes

Condition codes are status bits that are part of the CPU state that indicate information about the most
recently executed assembly instructions. They can be thought of as multiple single-bit registers, though
they are actually part of a larger EFLAGS register in x86-64. The four condition codes that we will focus
on are the Carry Flag (CF), Zero Flag (ZF), Sign Flag (SF), and Overflow Flag (OF).

These flags are set implicitly (i.e. as a side effect) by arithmetic and logical operations and indicate
whether or not the result had unsigned overflow (CF), was zero (ZF), was negative (SF), or had signed
overflow (OF). So, while the instruction’s main objective is to store the result in the destination
operand, the values of the condition codes are being automatically updated based on the result.

Example: If 0x80 is stored in $al, then addb %al, %al would update the value in 3al to 0x00,
butalsosetCF = 1,ZF = 1,SF = 0,andOF = 1.

These flags can also be set explicitly by two special instructions: compare (cmp) and test (test). The
purpose of these instructions is just to update the condition codes and their results are never stored.
cmp produces a result equivalent to the sub instruction and test produces a result equivalent to the
and instruction, with the condition codes being set as they would for those instructions.

The reason that we care about the condition codes is that their values are used to determine the
outcome of two families of instructions: jump and set. It is through the use of these families of
instructions that we are able to implement all control flow — unconditional and conditional jumps allow
us to construct more abstract constructs such as if-else, looping, and switch statements.

Jump and Set

The table below show both the jump and set family of instructions (note that there is no unconditional
set). We will concern ourselves with the “Description” column rather than the “Condition” column —
it’s good to know that the effects of these instructions depend on the current value of the condition
codes, but you don’t need to know the exact logical expressions.

Jump Instr Set Instr Condition Description

Jmp target - 1 Unconditional

Jje target | sete dst ZF Equalto 0

jne target | setne dst ~ZF Not Equal to 0

Jjs target | sets dst SF Negative

jns target | setns dst ~SF Nonnegative

Jg target | setg dst | ~(SF"OF) &~ZF | Greater Than 0O (Signed)

Jjge target | setge dst ~ (SF~OF) Greater Than or Equal To 0 (Signed)
31 target | setl dst (SF"OF) Less Than 0 (Signed)

Jjle target | setle dst (SF~OF) | Z2F Less Than or Equal To 0 (Signed)
ja target | seta dst ~CF&~ZF Above 0 (unsigned “>”)

Jb target | setb dst CF Below 0 (unsigned “<”

The difference between these families of instructions is that the jump family will jump our program to
the specified target (i.e. change which instruction we execute next) if the condition is met, while the set
family will set the value of the 1-byte dst register to the value of the condition (i.e. 0x00 or 0x01).

The condition can be thought of more intuitively as whether or not the description is true of the result
of the last instruction that changed the condition codes (either implicitly via an arithmetic/logical
instruction or explicitly via a compare/test instruction).

Extension Instructions (movz and movs)

Extension instructions are similar to a regular mov instruction, except that the source operand is
smaller/shorter than the destination operand. movz and movs will perform the two types of extension
we talked about with integers in C: zero extension and sign extension, respectively.

Unlike a normal mov instruction that takes one width specifier/instruction suffix, the extension
instructions require two: the first for the source width and the second for the destination width.

Note: In x86-64, any instruction that generates a 32-bit value for a register (e.g. uses $eax as its

destination operand) also sets the higher-order 32-bits of the register to all zeros. This is to

maintain backwards compatibility with older IA32 code. See CSPP p. 184 for a good example.

Example: If 0x80 is currently stored in %al:
%bx — $bx to 0x0080, %bx = $bx to OXFF80,
%ebx = %ebx to 0xFFFFFF80 and %rbx to 0x00000000FFFFFF80.

movzbw %al, movsbw %al,

movsbl %al,

