CSE 351 Lecture 7 — Floating Point Il

IEEE 754 Floating Point Special Cases

Floating point allows for special numbers. These are obtained using specific combinations of the
exponent and mantissa fields as follows:

E M Meaning
0b0...0 0b0...0 +0
0b0...0 non-zero Denormalized number
everything else anything Normalized number
0b1..1 0b0...0 +oo
Ob1..1 non-zero Not-a-Number (NaN)

A denormalized number uses an implicit leading 0 (instead of 1) and the fixed exponent of 1 — bias
(even though the encoding is 0b0...0). This allows for the encoding of smaller numbers (closer to 0).

Notice that the addition of these special cases constricts the range of normalized exponents by one on
both extremes.

Floating Point Limitations

The limitations of floating point are much more apparent to a programmer than integers due to
existence of the special cases and the nature of the types of numbers we are trying to represent. Our
chosen representation scheme leaves open three different categories of representation limitations:

1. The largest normalized number we can represent is when E = 0b1...10 and M = 0b1...1. The next
largest number we can represent is infinity. When the result/value we are trying to represent is
too large, it results in overflow and the stored result is +oo.

2. The smallest normalized number we can represent is when E = 0b0...0 (denormalized) and M =
0b0...01. The next smallest number we can represent is 0. When the result/value we are trying
to represent is too small, it results in underflow and the stored result is +0.

3. The limited precision afforded us by the fixed width of the mantissa also means that we cannot
represent numbers that fall between two neighboring representable numbers. In this case, the
stored result will be one of the two neighboring representable numbers, determined by
rounding.

A rough visualization of the representable floating point numbers can be seen below. Values between
two norm or denorm points result in rounding. Values between the outermost norm points and infinity
result in overflow. Values between the innermost denorm points and zero result in underflow.

-15 -10

10 15

¢ Denormalized @ Normalized B Infinity




Floating Point Arithmetic

Because of the limitations of floating point representation, there are lots of issues to be aware of when
using floating point numbers as a programmer:

e Arithmetic operations on co and NaN will work without warning, sometimes giving unintuitive
results and making it difficult to pinpoint the origin of unexpected values.

e Rounding breaks the associative, distributive, and cumulative properties of floating point
arithmetic.

e Straight equality comparisons (==) may yield unexpected results due to rounding. For example,
two close but different values may be rounded to the same stored value and unexpectedly
return true.

e (Casting between an integral data type and a floating point data type changes the bit
representation! The value may be changed from rounding, truncation, or overflow during the
conversion.



