YA/ UNIVERSITY of WASHINGTON

L26: Memory Allocation Il

Memory Allocation lli

CSE 351 Autumn 2019

Instructor:
Justin Hsia

Teaching Assistants:

Andrew Hu
Antonio Castelli
Cosmo Wang
Diya Joy

lvy Yu

Kaelin Laundry
Maurice Montag
Melissa Birchfield
Millicent Li

Suraj Jagadeesh

CSE351, Autumn 2019

BUT ENQUGH OF MY THEQRIES
ABOUT THANKSGWING. THE
REAL REASON WERE HERE
1§ TO DISCUSS ™Y HYPO-
“THESIS THAT DARK MATTER
ITSELF 15 WHAT CoNSCIQUS-
NESS 15 MADE OF...

J
wes)

UNOBSERVABLE TO ANY-
THING THAT IS [TSELF
CONSCIOUS 1IN MUCH THE
WAY THE MAIL-MAN
WON'T DELIWWER YouR
MALL IF You ARE
WATCHING THE MAIL-
BoR

WHICH BRINGS US TO My
THEORY ABOUT GHOSTS--

WAIT DID YOU JUST
sey THANKSGINING
WaS INVENTED BY THE
TURKEY VOLUNTARY
EXTINCTION

MOVEMENT?

https://xkcd.com/825/

YA/ UNIVERSITY of WASHINGTON L26: Memory Allocation Ill

Administrivia

+» hw22 due Monday (12/2)
+» Lab 5 due next Friday (12/6)

= Recommended that you watch the Lab 5 helper videos

= “Virtual section” videos released over Thanksgiving

+ Final Exam: Tue, Dec. 10 @ 12:30pm in KNE 120
" Review Session: Sug Dec 8,3:30-6 pmin SAV 260

- Take half of a practice exam in an exam environment, then go over
problems (more info to be released on Piazza)

" Cumulative (midterm clobber policy applies)
- Midterm portion will be “harder” than the Midterm

= TWO double-sided handwritten 8.5X11” cheat sheets

YA/ UNIVERSITY of WASHINGTON L26: Memory Allocation Ill CSE351, Autumn 2019

Boundary tags not

Freeing with LIFO Policy (Case 1) | stown buccon

forget about them!

Before

Root

« Insert the freed block at the root of the list

After Q sddckonal node m

3 pointers cl«aﬂgeA

new wode 1
Root O £ g

hew node _Q

YA/ UNIVERSITY of WASHINGTON L26: Memory Allocation Ill CSE351, Autumn 2019

Boundary tags notJ

Freeing with LIFO Policy (Case 2) [Showm but don'

forget about them!

Before free (@) node -l
store ®
node O
Root ? \ e 1 LI o
Sore
\ ,/ here
(here freed Hock L\a(ipenec}\‘l‘o Le aAJo\cefd" ° I,.
Yo node n of free lish node mrl

+ Splice successor block out of list, coalesce both memory blocks,
and insert the new block at the root of the list

5 ro;,\‘l‘e,r_s u\po\c‘:}eo\

After @hum\:w of nodes ih@
®
Root O

new node O ‘ F -
hode _'YE_' .

heL ho&e_i_._

YA/ UNIVERSITY of WASHINGTON L26: Memory Allocation Ill CSE351, Autumn 2019

Boundary tags notJ

Freeing with LIFO Policy (Case 3) [Showm but don'

forget about them!

Before free (@)
node nl ®

Root node M 1
+’ I

reed block ad)acent \ °
4o node n GF‘Free l.s‘\'

—

node O
ao

+ Splice predecessor block out of list, coalesce both memory
blocks, and insert the new block at the root of the list

node n+\

7

g (:o'm"'l“e/q J*CC"CJ\

(J\'O
After Some number of nodes
in Pree list

hewnade 1

hew hole 1

Root .L}” i
node mil| @ P

YA/ UNIVERSITY of WASHINGTON L26: Memory Allocation Ill CSE351, Autumn 2019

Boundary tags notJ

Freeing with LIFO Policy (Case 4) [Showm but don'

forget about them!

Before

)

hode -\ node n/—_

r\b(\e (6]
Root node m o
freed block GAJ‘*C"T"V I I Node 2
1o nodes m. and N
m ed 2 | hode mH +\
of Free list 2 R ®/9] nodent:

(asmme)
+ Splice predecessor and successor blocks out of list, coalesce all

3 memory blocks, and insert the new block at the root of the

lict -:} M_,\eq %AM
After 1 ‘Fewe(hode In ‘r\fee \ist

new node M
®

Root @H
new node U

Node mt|

hew no&e_;_

o <
=T ©

® ¢
&

new hode M

YA/ UNIVERSITY of WASHINGTON L26: Memory Allocation Ill CSE351, Autumn 2019

Explicit List Summary

+» Comparison with implicit list:

= Block allocation is linear time in number of free blocks instead of all
blocks

« Much faster when most of the memory is full

= Slightly more complicated allocate and free since we need to splice
blocks in and out of the list

= Some extra space for the links (2 extra pointers needed for each free
block)

Increases minimum block size, leading to more internal fragmentation

+» Most common use of explicit lists is in conjunction with
segregated free lists

= Keep multiple linked lists of different size classes, or possibly for
different types of objects

YA/ UNIVERSITY of WASHINGTON L26: Memory Allocation Ill CSE351, Autumn 2019

Allocation Policy Tradeoffs

Data structure of blocks on lists

= |mplicit (free/allocated), explicit (free), segregated (many
free lists) — others possible!

*

>

+ Placement policy: first-fit, next-fit, best-fit

" Throughput vs. amount of fragmentation

*

When do we split free blocks?

®" How much internal fragmentation are we willing to tolerate?

*

When do we coalesce free blocks? Leve dsiumed his

. . . . K o 4o oo
" Immediate coalescing: Every time free is called

L)

= Deferred coalescing: Defer coalescing until needed

- e.g. when scanning free list for malloc or when external
fragmentation reaches some threshold

YA/ UNIVERSITY of WASHINGTON

L26: Memory Allocation Il

CSE351, Autumn 2019

More Info on Allocators

+ D. Knuth, “The Art of Computer Programming”, 2"°
edition, Addison Wesley, 1973

" The classic reference on dynamic storage allocation

+» Wilson et al, “Dynamic Storage Allocation: A Survey
and Critical Review”, Proc. 1995 Int’l| Workshop on

Memory Management, Kinross, Scotland, Sept, 1995.
"= Comprehensive survey

= Available from CS:APP student site (csapp.cs.cmu.edu)

YA/ UNIVERSITY of WASHINGTON L26: Memory Allocation Ill

Memory Allocation

*

Dynamic memory allocation

" |Introduction and goals

= Allocation and deallocation (free)
" Fragmentation

*

Explicit allocation implementation
= Implicit free lists

= Explicit free lists (Lab 5)

= Segregated free lists

*

Implicit deallocation: garbage collection

4

» Common memory-related bugs in C

CSE351, Autumn 2019

10

YA/ UNIVERSITY of WASHINGTON L26: Memory Allocation Ill CSE351, Autumn 2019

Wouldn’t it be nice...

+ If we never had to free memory?
+» Do you free objects in Java?

" Reminder: implicit allocator

11

YA/ UNIVERSITY of WASHINGTON L26: Memory Allocation Ill CSE351, Autumn 2019

Garbage Collection (GC)

(Automatic Memory Management)

+ Garbage collection: automatic reclamation of heap-allocated
storage — application never explicitly frees memory

void foo () {
int* p = (int*) malloc(128); hep

return; /* p block is now garbage! */
} P s o‘ea”oco:'l"20\

sYack

«» Common in implementations of functional languages, scripting
languages, and modern object oriented languages:

= Lisp, Racket, Erlang, ML, Haskell, Scala, Java, C#, Perl, Ruby, Python, Lua,
JavaScript, Dart, Mathematica, MATLAB, many more...

+ Variants (“conservative” garbage collectors) exist for C and C++
= However, cannot necessarily collect all garbage

12

CSE351, Autumn 2019

YA/ UNIVERSITY of WASHINGTON L26: Memory Allocation Ill

Garbage Collection

+» How does the memory allocator know when memory

can be freed?

" |n general, we cannot know what is going to be used in the
future since it depends on conditionals

"= But, we can tell that certain blocks cannot be used if they
are unreachable (via pointers in registers/stack/globals)

+» Memory allocator needs to know what is a pointer
and what is not — how can it do this?

= Sometimes with help from the compiler

13

CSE351, Autumn 2019

YA/ UNIVERSITY of WASHINGTON

L26: Memory Allocation Il

Memory as a Graph

+» We view memory as a directed graph
= Each allocated heap block is a node in the graph

= Each pointer is an edge in the graph
" Locations not in the heap that contain pointers into the heap are called

root nodes (e.g. registers, stack locations, global variables)

Root nodes

0

O Q

Heap nodes

< 1]
e |7
AeS

5)

O
O

po\h‘\'e\fs " \jour \mrocess

O reachable

not reachable
(garbage)

A node (block) is reachable if there is a path from any root to that node
Non-reachable nodes are garbage (cannot be needed by the application)

14

CSE351, Autumn 2019

YA/ UNIVERSITY of WASHINGTON L26: Memory Allocation Ill

Garbage Collection

+» Dynamic memory allocator can free blocks if there are
no pointers to them

/

+» How can it know what is a pointer and what is not?

+» We’'ll make some assumptions about pointers:

= Memory aIIoca'§or can distinguish pointers from non-
pointers «.
= All pointers point to the start of a block in the heap

= Application cannot hide pointers
(e.g. by coercing them to a 1ong, and then back again)

15

YA/ UNIVERSITY of WASHINGTON L26: Memory Allocation Ill CSE351, Autumn 2019

Classical GC Algorithms

+ Mark-and-sweep collection (McCarthy, 1960)
= Does not move blocks (unless you also “compact”)
+ Reference counting (Collins, 1960)
= Does not move blocks (not discussed)
+ Copying collection (Minsky, 1963)
= Moves blocks (not discussed)
+ Generational Collectors (Lieberman and Hewitt, 1983)

" Most allocations become garbage very soon, so
focus reclamation work on zones of memory recently allocated.

« For more information:

= Jones, Hosking, and Moss, The Garbage Collection Handbook: The Art of
Automatic Memory Management, CRC Press, 2012.

= Jones and Lin, Garbage Collection: Algorithms for Automatic Dynamic
Memory, John Wiley & Sons, 1996.

16

YA/ UNIVERSITY of WASHINGTON L26: Memory Allocation Ill CSE351, Autumn 2019

Mark and Sweep Collecting

% Can build on top of malloc/free package

= Allocate using malloc until you “run out of space”

+» When out of space:
= Use extra mark bit in the header of each bIocIé'

Sim;ldu‘ ‘]'O
is-allocated T bt

= Mark: Start at roots and set mark bit on each reachable block
= Sweep: Scan all blocks and free blocks that are not marked

—I Arrows are NOT
free list pointers

1 I _I Mark bit set

<edr Vv

|
)

B&{cz\re mask IZ

/%

Sweep ™ 7 N\
After mark t

)

(el 1111

After sweep | _|_| free |

17

YA/ UNIVERSITY of WASHINGTON L26: Memory Allocation Ill CSE351, Autumn 2019

Assumptions For a Simple Implementation

Non-testable]

+ Application can use functions to allocate memory: [Material

" b=new (n) returns pointer, b, to new block with all locations cleared

" b[i] read location i of block b into register
" b[i]l=v write v into location 1 of block b

+ Each block will have a header word (accessedatb [-1])

the magiv that handles our dS!umPTTMS'/
« Functions used by the garbage collector:

" is ptr(p) determines whether p is a pointer to a block

" length (p) returns length of block pointed to by p, not including
header

" get roots () returnsalltheroots

18

YA/ UNIVERSITY of WASHINGTON L26: Memory Allocation Ill CSE351, Autumn 2019

K= 3€+'r°6\5 © Non-testable
Mark for p i x: Material

+ Mark using depth-first traversal of the memory graph

ptr mark (ptr p) { // p: some word in a heap block
if (!is ptr(p)) return; // do nothing if not pointer
if (markBitSet (p)) return; // check if already marked mp‘\
setMarkBit (p) ; // set the mark bit VL‘N""A\S % \
for (i=0; i<length(p); i++) // recursively call mark on C\’:ﬁos;

mark (p[i]); // all words in the block‘:\vm\\, Araversed

return;

}

root
AN
Before mark I: I I zl ¥

\4
After mark _I Mark bit set

19

YA/ UNIVERSITY of WASHINGTON L26: Memory Allocation Ill

Sweep

«» Sweep using sizes in headers

CSE351, Autumn 2019

[Non-testable

Material

J

ptr sweep (ptr p, ptr end) {
while (p < end) {
if (markBitSet (p))
clearMarkBit (p) ;
else if (allocateBitSet (p))
nexd free(p);
hlodk ——p += length(p)
}

//
//
//
//
//
//
//

ptrs to start & end of heap
while not at end of heap
check if block is marked

if so, reset mark bit

if not marked, but allocated
free the block

adjust pointer to next block

After mark

After sweep | free |

_I Mark bit set

20

YA/ UNIVERSITY of WASHINGTON L26: Memory Allocation Ill

CSE351, Autumn 2019

Non-testable]

Conservative Mark & Sweep in C [

+» Would mark & sweep work in C?

" is ptr determines if a word is a pointer by checking if it points to an
allocated block of memory

= Butin C, pointers can point into the middle of allocated blocks
(not so in Java)

Makes it tricky to find all allocated blocks in mark phase

ptr
header 1

" There are ways to solve/avoid this problem in C, but the resulting
garbage collector is conservative:

Every reachable node correctly identified as reachable, but some unreachable
nodes might be incorrectly marked as reachable

" |nJava, all pointers (i.e. references) point to the starting address of an
object structure — the start of an allocated block

21

YA/ UNIVERSITY of WASHINGTON L26: Memory Allocation Ill CSE351, Autumn 2019

Memory-Related Perils and Pitfalls in C

Program stop

Slide possible? Fixes:
A) | Dereferencing a non-pointer 27 Y 5Can’€(...)@:\‘0‘)
B) | Freed block — access again 7 ﬂ Y free(x) later
C) | Freed block — free again 78 W/ fV‘eeCy)
D) | Memory leak — failing to free memory :’;O /\) free dl nodes
E) | No bounds checking 723 Y ’ngb
F) | Reading uninitialized memory 26 N Calloc
G) | Referencing nonexistent variable 24 N malloc
H) | Wrong allocation size 25 Y sizeof (int ¥)

22

YA/ UNIVERSITY of WASHINGTON L26: Memory Allocation Ill CSE351, Autumn 2019

Find That Bug! (Slide 23)

char s[8]; // small buffer
int 1i;

gets(s); /* reads "123456789" from stdin */

: [
no ’coumdS d'\eckir\s b\iqer O\Ier‘Flow,
Error E Prog stop \]/ Fix: ‘Fgej\"s (s ; i)

Type: Possible?

23

YA/ UNIVERSITY of WASHINGTON L26: Memory Allocation Ill CSE351, Autumn 2019

Find That Bug! (Slide 24)

int* foo () { «r’—__— //”“)
int val = 0;

- - orSr
W : —| ¢ >'@
return _%_val; J—&Dc) Jreern L o
} L Can"" bd in

[} rc-g"&“'ef

Ye‘ferensjnﬁq" valid addres g

notes on the stk
Error G Prog stop I\j Fix: P‘“”\’*/’*Jvemf +o foo
Type: Possible? or wie melloc mstead

24

YA/ UNIVERSITY of WASHINGTON

L26: Memory Allocation Il

CSE351, Autumn 2019

Find That Bug! (Slide 25)

int **p;
p = (Int **)malloc(N * sizeof (int));
T allocates N ints = 4*N bytes
for (int 1 = 0; 1 < N; 1++) {
pli] = (int *)malloc(M * sizeof(int));
} tl\)r'r\e_s +b M‘Pk' X*M Lﬁ)’eg

- N and M defined elsewhere (#define)

Loron runs 6 end
a\\oca on o‘(‘ a\locod'ce)
size L\o(k
Error Prog stop
Type: H Possible? Y

Fix: N b 572-90“: <|fd’ ‘\-‘)

25

YA/ UNIVERSITY of WASHINGTON L26: Memory Allocation Ill CSE351, Autumn 2019

Find That Bug! (Slide 26)

/* return y = Ax */

int *matvec (int **A, int *x) {
int *y = (int *)malloc(N*sizeof (int));
int i, 7;

1 < N; i++)

0; J < N; j++)

L1 GDAMT 3] * x[3];
yUi) = yTid+ ATIGI* x 33,

return y; tvmdsgmh@e!

A is NxN matrix, x is N-sized vector (so product is vector of size N)
- N defined elsewhere (#define)

Negdin
un'm(-,h‘a\ﬁ\zef)« (st wing gorbsge VA
V\CMQPY = Yuns ‘F.ne L\:\’ge"’ (J&‘f()\ Y‘QJ\).H’S
Error | — Prog stop Fix:
Type: | | Possible? N calloc (N, sigedt (iet)

26

YA/ UNIVERSITY of WASHINGTON L26: Memory Allocation Ill CSE351, Autumn 2019

Find That Bug! (Slide 27)

D)

» The classic scanf bug

" int scanf (const char *format)

int val;

scanf ("%d", wval); K read s n'npud', parses vt stores Tt logtion vl

§e9‘Fau\'\ £ val

does gt eAtain
dereferencing a Valid addvess
« Y\DV\‘P\).\V\"‘GT
Error IA\ Prog stop \(Fix: scant (%4 E_Vﬁ‘),'
Type: Possible?

27

YA/ UNIVERSITY of WASHINGTON

Find That Bug! (Slide 28)

X

£

(int*)malloc(N * sizeof (1nt)
// manipulate x
free (x);

(int*)malloc(M * sizeof (1nt)
// manipulate y
free (x);

‘tha ago&n

Error

Type:

(Ande'(]AEd var
(Some SyS'}er\J wil Sej“l;uH')

Prog stop
Possible?

L26: Memory Allocation Il CSE351, Autumn 2019

Fm:‘ﬁm<&>

YA/ UNIVERSITY of WASHINGTON L26: Memory Allocation Ill

Find That Bug! (Slide 29)

X = (int*)malloc(N * sizeof (int));
// manipulate x
free (x);
y = (int*)malloc(M * sizeof (int));
for (1=0; i<M; 1i++)
yli] = &[i)++;

undefinedh
6~((€SJ ‘FV'EEA MeMoh)/ WVN(

Error B Prog stop \(Fix: Free(x) later

Type: Possible? (o bstom)

CSE351, Autumn 2019

29

YA/ UNIVERSITY of WASHINGTON L26: Memory Allocation Ill CSE351, Autumn 2019

Find That Bug! (Slide 30)

typedef struct L {

int val; A ﬂ;%J
struct L *next; nole :]
} list;
void foo () {
list *head = (list *) malloc(sizeof (list));

head->val = 0;
head->next = NULL;
// create and manipulate the rest of the list

50 o E»\alloc: here head \
free (head) ; E/\Mi)_[@/\ (1]
FOLULD; U, Fres first node! T ey

lew }o \/M
MeEmory leak M’ deted”7
Error D Prog stop N Fix: Y‘CCursi\re/ tevadive
Type: Possible? free owr lisk

30

YA/ UNIVERSITY of WASHINGTON L26: Memory Allocation Ill CSE351, Autumn 2019

Dealing With Memory Bugs [otera]

% Conventional debugger (gdb)
" Good for finding bad pointer dereferences
®" Hard to detect the other memory bugs

+» Debuggingmalloc (UToronto CSRImalloc)
" Wrapper around conventionalmalloc

= Detects memory bugs atmalloc and free boundaries
- Memory overwrites that corrupt heap structures
- Some instances of freeing blocks multiple times
- Memory leaks
" Cannot detect all memory bugs
- Overwrites into the middle of allocated blocks
- Freeing block twice that has been reallocated in the interim
- Referencing freed blocks

31

YA/ UNIVERSITY of WASHINGTON L26: Memory Allocation Ill

Dealing With Memory Bugs (cont.) [

CSE351, Autumn 2019

Non-testable

Material]

+» Some malloc implementations contain checking

code
" Linux glibc malloc: setenv MALLOC CHECK 2
" FreeBSD: setenv MALLOC OPTIONS AJR

Binary translator@]}inux), Purify
= Powerful debugging and analysis technique
= Rewrites text section of executable object file
= Can detect all errors as debuggingmalloc

" Can also check each individual reference at runtime
- Bad pointers
- Overwriting

- Referencing outside of allocated block

32

YA/ UNIVERSITY of WASHINGTON L26: Memory Allocation Ill CSE351, Autumn 2019

What about Java or ML or Python or ...?

Non-testable
Material

+» In memory-safe languages, most of these bugs are

L)

impossible

= Cannot perform arbitrary pointer manipulation
= Cannot get around the type system

= Array bounds checking, null pointer checking

= Automatic memory management

But one of the bugs we saw earlier is possible. Which
onhe?

33

YA/ UNIVERSITY of WASHINGTON L26: Memory Allocation Ill CSE351, Autumn 2019

Memory Leaks with GC

- Not because of forgotten free — we have GC!
» Unneeded “leftover” roots keep objects reachable
» Sometimes nullifying a variable is not needed for correctness

but is for performance Free (p);
, . p=MALL; , .
+ Example: Don’t leave big data structures you’re done with in a

static field

Root nodes §:> <;> <:2

Heap nodes O reachable
O not reachable

(garbage)

O

34

