w UNIVERSITY of WASHINGTON L21: Processes Il, Virtual Memory | CSE351, Autumn 2019

Well I'm having trouble opening
new tabs. And the others are Hmm. Well |

Processes I, s ronmeiee e 00 | | i

Virtual Memory |
CSE 351 Autumn 2019

Instructor:
Justin Hsia

/ OK, here's an extra 4 gigs.
Make sure you share it around,
\ there aren't any more slots left /

Teaching Assistants:

eah, OK

Andrew Hu (eoh. OF
Antonio Castelli S
Cosmo Wang

Diya Joy

lvy Yu

Kaelin Laundry
Maurice Montag
Melissa Birchfield
Millicent Li

Suraj Jagadeesh

So? What did he say? Will he

1 : He told wou
give us some more RAM? to get lost

Yeoh, whot
a dotuche.

http://rebrn.com/re/bad-chrome-1162082/

CommitStrip.com

w UNIVERSITY of WASHINGTON L21: Processes Il, Virtual Memory | CSE351, Autumn 2019

Administrivia

+» hw18 due Monday (11/18)
+» Lab 4 due next Friday (11/22)

W UNIVERSITY of WASHINGTON L21: Processes Il, Virtual Memory | CSE351, Autumn 2019

ParesT CLi(A

Fork Example B <E

void forkl () f \
int x = 1;
id t fork ret = fork():;)
l‘::f (fork ret == 0) R spliTs here
printf ("Child has x = %d\n",(i}x);é~<ﬁﬂd mdy
else
printf ("Parent has x = $d\n", (=>x); 6—-PMwK\6My
printf ("Bye from process %d with x = $d\n", getpid(), x);éﬂ‘bdﬂ\
}

+» Both processes continue/start execution after fork
= Child starts at instruction after the call to fork (storing into pid)

+» Can’t predict execution order of parent and child
+» Both processes start with x =1

= Subsequent changes to x are independent

+ Shared open files: stdout is the same in both parent and child

W UNIVERSITY of WASHINGTON L21: Processes Il, Virtual Memory | CSE351, Autumn 2019

Modeling £fork with Process Graphs

+» A process graph is a useful tool for capturing the partial
ordering of statements in a concurrent program

: : =0 "Paerthos..."
= Each vertex is the execution of a statement x.___;;“’i‘# g
——X Pr‘m

" a(>b means a happens before b
m Edges can be labeled with current value of variables
" printf vertices can be labeled with output

= Each graph begins with a vertex with no inedges

+ Any topological sort of the graph corresponds to a feasible
total ordering

= Total ordering of vertices where all edges point from left to right

YA/ UNIVERSITY of WASHINGTON

L21: Processes I, Virtual Memory |

CSE351, Autumn 2019

Fork Example: Possible Output

void forkl () {

int x = 1;
pid t fork ret = fork();
if (fork ret == 0)
printf ("Child has x = %d\n", ++x);
else
printf ("Parent has x = %$d\n", --Xx);
printf ("Bye from process %d with x = $d\n", getpid(), Xx):;
}
Possible Nt Possible
c BC NN~ v
childh x=2 Child Bye C E> C C c P
' >e -0 0 RCBRP P P B¢ BC
++x printf printf P c R Rp ¢ rp C ..
RP 8P 8P BC P BP
P BP
=0 Parent Bye
| yoarent % " =Y
x= f?).r >% pri.ntf pri.ntf 0 [W\j 65 C coves belore BC

an ot P comes befoce BF

w UNIVERSITY of WASHINGTON L21: Processes Il, Virtual Memory | CSE351, Autumn 2019

Polling Question

+ Are the following sequences of outputs possible?

= Vote at http://PollEv.com/justinh Seq 1: Seq 2:
void nestedfork() { 1.0 LO ¢ Pacess 1
printf ("LO\n") ;
if (fork() == 0) { L1 Bye ¢ Prues L
printf ("L1\n"); Bye .1 & Pows 2
if (fork() == 0) {
printf ("L2\n") ; Bye L2 & Proas3
} Bye Bye ¢Pucess 2/s
}
printf ("Bye\n") ; @! BY@(——mes 2
}
L:L_—E‘ZG Protess 3 |
[T gt |B. No Yes
Ll _ Be
S R g e 2 C. Yes No
RN M- ”} ., D. Yes Yes
AT 7 E. We're lost...

W UNIVERSITY of WASHINGTON L21: Processes Il, Virtual Memory | CSE351, Autumn 2019

Note: the return values of fork and
exec* should be checked for errors

Fork-Exec

+ fork-exec model:
" fork () creates a copy of the current process

= exec™* () replaces the current process’ code and address
space with the code for a different program
- Whole family of exec calls —see exec (3) and execve (2)

// Example arguments: path="/usr/bin/1s",

// argv[0]="/usr/bin/1s", argv[1l]="-ahl", argv/[2]=NULL
void fork exec (char *path, char *argv([]) ({
pid t fork ret = fork();
if (fork ret != 0) {
printf ("Parent: created a child %d\n", fork ret);
} else {

printf ("Child: about to exec a new program\n");
exec&)path, arqgv) ;

————

printf ("This line printed by parent only!\n");

W UNIVERSITY of WASHINGTON L21: Processes Il, Virtual Memory | CSE351, Autumn 2019

Exec-ing a new program

Stack
Very high-level diagram of what
happens when you run the
Heap command “1s” in a Linux shell:
Data % This is the loading part of CALL!
Code: /usr/bin/bash What 9els ,
loaded here -
fork
parent l ot ()\ child
Stack
Stack
ir\’\‘\'\‘a\ s’h&’\‘@
sxec” U | oF process
Heap
Data . lData
Code: /usr/bin/bash ;rg;i;"" |!Code:|/usr/bin/Is

e_xt(\;h\u (B 8

W UNIVERSITY of WASHINGTON L21: Processes Il, Virtual Memory | CSE351, Autumn 2019

it ma’m(’m’f arge, har” “’ﬂ“u) This is extra
_—\/\—/ _
execve Example e (non-testable)
argumevx S ’\J arguments Tt Progeem material

Execute "[usr/blin/ls —1 1lab4" inchild process using current

environment:

myargv[argc] = NULL
(argc ==) myargV[Z] +—> "]1ab4"
myargv [1] +—> "-1"
(ﬂmyargv > myargv [0] ?T /usr/bin/ls
Po\r\\ '
Greay s of Po}n‘}ers envp[n] = NULL ?"”‘3 Merals
*b.ﬁﬁnﬁg envp[n-1] +—> "PWD=/homes/iws/jhsia"
(I
Senviron Jenvp (0] USER=jhsia
if ((pid = fork()) == 0) { /* Child runs program */

if (execve (myargv([0], myargv, environ) < 0) {
printf ("$s: Command not found.\n", myargv([0]);
exit (1) ;

}

Run the]printenﬂcommand in a Linux shell to see your own environment variables

YA/ UNIVERSITY of WASHINGTON

Stack Structure

on a New
Program Start

argv
(in $rsi)

argc
(in $rdi)

L21: Processes I, Virtual Memory |

Bottom of stack

Null-terminated

environment variable strings

Null-terminated
\ ﬁon}gjaws-ﬁne arg strings

envp[n] == NULL

envp [n—-1]

envp [0]

o

argv[argc] = NULL

argv[argc—1]

ST e

argv[0]

Stack frame for

libc start main

Future stack frame for

&~

CSE351, Autumn 2019

This is extra
(non-testable)
material

environ

| (global var)

envp
(in $rdx)

9ufa‘.l - ﬁr&C

i hrsi — arg\/

10

YA/ UNIVERSITY of WASHINGTON

L21: Processes I, Virtual Memory |

CSE351, Autumn 2019

exit: Ending a process

+ vold exit (1nt status)

= Explicitly exits a process

- Status code: 0is used for a normal exit, nonzero for abnormal exit

«» The return statement frommain () also ends a
process in C

® The return value is the status code

11

w UNIVERSITY of WASHINGTON L21: Processes Il, Virtual Memory | CSE351, Autumn 2019

Processes

+» Processes and context switching
+» Creating new processes

" fork(),exec* (),andwait ()

« Zombies

12

W UNIVERSITY of WASHINGTON L21: Processes Il, Virtual Memory | CSE351, Autumn 2019

Zombies

+ A terminated process still consumes system resources
= Various tables maintained by OS
= Called a “zombie” (a living corpse, half alive and half dead)

+» Reaping is performed by parent on terminated child

" Parent is given exit status information and kernel then
deletes zombie child process

+» What if parent doesn’t reap?
= |f any parent terminates without reaping a child, then the
orphaned child will be reaped by init process((pid of 1
- Note: on recent Linux systems, init has been renamed systemd

" In long-running processes (e.g. shells, servers) we need

explicit reaping
13

CSE351, Autumn 2019

YA/ UNIVERSITY of WASHINGTON L21: Processes I, Virtual Memory |

wait: Synchronizing with Children

+ 1nt wait (int *child status)

= Suspends current process (i.e. the parent) until one of its
children terminates

"= Return value is the PIT)-(of the child process that terminated
« On successful return, the child process is reaped

" Ifchild status !=NULL, thenthe *child status

value indicates why the child process terminated
- Special macros for interpreting this status — see man wait (2)

+» Note: If parent process has multiple children, wait
will return when any of the children terminates
" waitpid can be used to wait on a specific child process

14

W UNIVERSITY of WASHINGTON L21: Processes Il, Virtual Memory | CSE351, Autumn 2019

wait: Synchronizing with Children

void fork wait ()
int child status;

if (fork() == 0) {
printf ("HC: hello from child\n"); llcknd
exit (0) ; ;

} else {

printf ("HP: hello from parent\n");)

wait (&child status);
printf ("CT: child has terminated\n"); }FWmﬁ*

}

printf ("Bye\n") ;)
} forks.c
HC exit
»® >0
printf Feasible output: Infeasible output:
HC HP HP
CT HP RC CT
HP & %Ye CT CT Bye
>® > >®

®
fork printf wait printf Bye B‘/f HC

15

W UNIVERSITY of WASHINGTON L21: Processes Il, Virtual Memory | CSE351, Autumn 2019

® void fork7 () {
Example: Zombie | om0 — o
/* Child */
printf ("Terminating Child, PID = %d\n",
getpid());
exit (0) ;
} else ({
printf ("Running Parent, PID = %d\n",
getpid());
linux> ./forks 7 & while (1); /* Infinite loop */
[1] 6639 T i
Running Parent, PID = 6639 I”M‘CWl Wnah forks.c

Terminating Child, PID = 6640
linux> ps
PID TTY TIME CMD
6585 ttyp9 00:00:00 tcsh .
6639 ttyp9 00:00:03 forks + ps shows child process as
6640 ttyp9 00:00:00 forks <defunct> “defunct”

6641 ttyp9 00:00:00 ps
linux> kill 6639 . _
(1] Terminated + Killing parent allows child to be
linux> ps reaped by init

PID TTY

6585 ttyp9
6642 ttyp9

16

YA/ UNIVERSITY of WASHINGTON

Example:
Non-terminating

Child

linux> ./forks 8
Terminating Parent,
Running Child, PID =
linux> ps
PID TTY
6585 ttyp9
6676 ttyp9
6677 ttyp9
linux> kill
linux> ps
PID TTY
6585 ttyp9
6678 ttyp9

PID =
6676

T IME
:00:00
:00:06
:00:00

CMD

L21: Processes Il, Virtual Memory |

CSE351, Autumn 2019

void fork8 () {

if (fork() == 0) {
/* Child */
printf ("Running Child, PID = %d\n",
getpid());
while (1); /* Infinite loop */
} else { R— child persists

printf ("Terminating Parent, PID =
getpid());

exit (0) ;

} forks.

sd\n",

6675

+ Child process still active even
though parent has terminated

tcsh

forks
PSs

L (4

» Must kill explicitly, or else will
keep running indefinitely

17

W UNIVERSITY of WASHINGTON L21: Processes Il, Virtual Memory | CSE351, Autumn 2019

Process Management Summary

fork makes two copies of the same process (parent & child)

= Returns different values to the two processes
» exec* replaces current process from file (new program)
" Two-process program:

« First fork ()
- if (pid == 0) { /* child code */ } else { /* parent code */}

" Two different programs:
« First fork ()
- if (pid == 0) { execv(...) } else { /* parent code */}

» walt orwailtpid used to synchronize parent/child execution
and to reap child process

18

YA/ UNIVERSITY of WASHINGTON

L21: Processes I, Virtual Memory |

Roadmap

CSE351, Autumn 2019

C: Java: Memory & data
car *c = malloc(sizeof (car)); Car c¢c = new Car{(); Integers & floats
c->miles = 100; c.setMiles (100) ; x86 assembly
c->gals = 17; c.setGals (17); Procedures & stacks
float mpg = get mpg(c); float mpg = Executables
free (c); c.getMPG () ; Arrays & structs
~ & Memory & caches
Assembly <;Jet_mpg}:1] Processes
. pushq srbp .
language: movq 4rsp, rbp Virtual memory
.. Memory allocation
popq srbp Javavs. C
ret i
\ 4
Machine 0111010000011000
code: 100011010000010000000010
: 1000100111000010
110000011111101000011111
Computer
system:

19

YA/ UNIVERSITY of WASHINGTON L21: Processes I, Virtual Memory |

Virtual Memory (VM¥*)

+» Overview and motivation

» VM as a tool for caching

+» Address translation

» VM as a tool for memory management
+ VM as a tool for memory protection

Warning: Virtual memory is pretty complex,

but crucial for understanding how processes
work and for debugging performance

*Not to be confused with “Virtual Machine” which is a whole other thing.

CSE351, Autumn 2019

20

W UNIVERSITY of WASHINGTON L21: Processes Il, Virtual Memory | CSE351, Autumn 2019

Memory as we know it so far... is virtual!

+ Programs refer to virtual memory addresses OXFF-eF

" movqg (%rdil), Srax

" Conceptually memory is just a very large array of bytes
= System provides private address space to each process

+ Allocation: Compiler and run-time system
" Where different program objects should be stored
= All allocation within single virtual address space

<« But...

= We probably don’t have 2% bytes of physical memory

= We certainly don’t have 2% bytes of physical memory
for every process

" Processes should not interfere with one another 0x00-+--+-0

Except in certain cases where they want to share code or data

21

W UNIVERSITY of WASHINGTON L21: Processes Il, Virtual Memory | CSE351, Autumn 2019

Problem 1: How Does Everything Fit?

64-bit virtual addresses can address Physical main memory offers
several exabytes a few gigabytes
(18,446,744,073,709,551,616 bytes) (e.g. 8,589,934,59%\bytes)

(Not to scale; physical memory would be smaller
than the period at the end of this sentence compared
to the virtual address space.)

C SM“er ‘H«w\ ‘Hn}g ’

1 virtual address space per process,
with many processes...

22

w UNIVERSITY of WASHINGTON L21: Processes Il, Virtual Memory | CSE351, Autumn 2019

Problem 2: Memory Management

Physical main memory

We have multiple

processes: Each process has... D
Process 1
Process 2 1
ea
ses ?
Process n .data where:

23

W UNIVERSITY of WASHINGTON L21: Processes Il, Virtual Memory | CSE351, Autumn 2019

Problem 3: How To Protect

Physical main memory

Process i

Process 7

Problem 4: How To Share?

Physical main memory

24

W UNIVERSITY of WASHINGTON L21: Processes Il, Virtual Memory | CSE351, Autumn 2019

How can we solve these problems?

« “Any problem in computer science can be solved by adding
another level of indirection.” - pavid Wheeler, inventor of the subroutine

L)

P1
.................. — | .
Without Indirection P2 T =+ || Thing
P3 7§ NewThing
P1
With Indirection =
P2 T o —> Thmg
e _
*1 | NewThing

What if | want to move Thing?

25

W UNIVERSITY of WASHINGTON L21: Processes Il, Virtual Memory | CSE351, Autumn 2019

Indirection

« Indirection: The ability to reference something using a name,
reference, or container instead of the value itself. A flexible
mapping between a name and a thing allows changing the
thing without notifying holders of the name.

— ® Adds some work (hnow have to look up 2 things instead of 1)

”" But don’t have to track all uses of name/address (single source!)

« Examples:

" Phone system: cell phone number portability
= Domain Name Service (DNS): translation from name to IP address
= Call centers: route calls to available operators, etc.

= Dynamic Host Configuration Protocol (DHCP): local network address
assignment

26

W UNIVERSITY of WASHINGTON L21: Processes Il, Virtual Memory | CSE351, Autumn 2019

Indirection in Virtual Memory

Virtual memory

S
Process 1

Physical memory

mapping.--.

7A

Virtual memory

VA

_—

Process n

+ Each process gets its own private virtual address space
+ Solves the previous problems!

27

w UNIVERSITY of WASHINGTON L21: Processes Il, Virtual Memory | CSE351, Autumn 2019

ceilin functivn
Address Spaces b r\?/ oo p)
n = 5
+ Virtual address space: Setof N = éﬂgvirtual addr
- {O) 1) 2) 3) ooy N_l} byles /\ T — F%Q2W

+ Physical address space: Set of M = 2™ physical addr
= {0,1,2,3,.. M-1}

+ Every byte in main memory has:
" one physical address (PA)
= zero, one, or more virtual addresses (VAs)

A
j (IL wed Ly many procese §
AU ed\ Wsed |o>/ 6he. protess

28

YA/ UNIVERSITY of WASHINGTON L21: Processes I, Virtual Memory |

Mapping

+ A virtual address (VA) can be mapped to either physical
memory or disk

®" Unused VAs may not have a mapping

As from different processes may map to same location in memory/disk

Process 1’s Virtua
Address Space

Physical
Memory

Process 2’s Virtual
Address Space

Disk

SLrirs

ﬁ “Swap Spam

29

YA/ UNIVERSITY of WASHINGTON

L21: Processes I, Virtual Memory |

CSE351, Autumn 2019

Summary

+ Virtual memory provides:

= Ability to use limited memory (RAM) across multiple
processes

" |llusion of contiguous virtual address space for each process
" Protection and sharing amongst processes

30

W UNIVERSITY of WASHINGTON L21: Processes Il, Virtual Memory | CSE351, Autumn 2019

BONUS SLIDES

Detailed examples:

« Consecutive forks
» walt () example
» waitpid () example

31

W UNIVERSITY of WASHINGTON L21: Processes Il, Virtual Memory | CSE351, Autumn 2019

Example: Two consecutive forks

Bye
>@
void fork2() { printf
printf ("LO\n") ; Ll Bye
] ?.7 > >@
fork () ; printf fork printf
printf ("L1I\n"); Bye
fork () ; prihtf
printf ("Bye\n") ;
} LO L1l Bye
- >® >® > >®

printf fork printf ork printf

Feasible output: Infeasible output:
LO LO

L1 Bye

Bye L1

Bye Bye

L1 L1

Bye Bye

Bye Bye

32

YA/ UNIVERSITY of WASHINGTON

L21: Processes I, Virtual Memory |

CSE351, Autumn 2019

Example: Three consecutive forks

+» Both parent and child can continue forking

void fork3 () {
printf ("LO\n") ;
fork () ;
printf ("L1\n") ;
fork () ;
printf ("L2\n") ;
fork () ;
printf ("Bye\n") ;
}

LO

Bye

12 | Bye

Bye

11|12 | Bye
‘ Bye
12 | Bye

Bye

11 |12 | Bye

33

YA/ UNIVERSITY of WASHINGTON

wait () Example

L21: Processes I, Virtual Memory |

CSE351, Autumn 2019

+ If multiple children completed, will take in arbitrary order

+ Can use macros WIFEXITED and WEXITSTATUS to get
information about exit status

void forkl0 () {
pid t pid[N];
int 1i;
int child status;

else

for (1 = 0; 1 < N; 1++)
if ((pid[i] = fork())
exit (100+1); /* Child

for (1 = 0; 1 < N; 1++)
pid t wpid = wait(&child
if (WIFEXITED (child_status))
printf ("Child %d terminated with exit status %d\n"

wpid, WEXITSTATUS (child status)):;

0)
*/

status) ;

printf ("Child %d terminated abnormally\n", wpid):;

34

waitpid (): Waiting for a Specific Process

pid t waltpid(pid tpid,int &status,intoptions)

" suspends current process until specific process terminates
= various options (that we won’t talk about)

void forkll () {
pid t pid[N];
int 1i;
int child status;
for (i = 0; i < N; i++)
if ((pid[i] = fork()) == 0)
exit (100+1); /* Child */
for (1 = 0; 1 < N; i++) {
pid t wpid = waitpid(pid[i], &child status, 0);
if (WIFEXITED (Child_status))
printf ("Child %d terminated with exit status %d\n",
wpid, WEXITSTATUS (child status)):;
else

printf ("Child %d terminated abnormally\n", wpid):;

W UNIVERSITY of WASHINGTON L21: Processes Il, Virtual Memory | CSE351, Autumn 2019

35

