
CSE351, Autumn 2019L15: Buffer Overflows

Buffer Overflows
CSE 351 Autumn 2019

Guest Teaching Assistants:

Instructor: Andrew Hu Antonio Castelli Cosmo Wang

Andrew Hu Diya Joy Ivy Yu Kaelin Laundry

Maurice Montag Melissa Birchfield Millicent Li

Suraj Jagadeesh

http://xkcd.com/804/

http://xkcd.com/804/

CSE351, Autumn 2019L15: Buffer Overflows

Administrivia

❖ Mid-quarter survey due tomorrow (10/31)

▪ HW 13 due Nov. 1 (Fri)

▪ HW 14 released today due Nov. 4 (Mon)

❖ Lab 3 released today, due next Friday (11/8)

▪ You will have everything you need by the end of this lecture

❖ Midterm grades (out of 100) to be released by Friday

▪ Solutions posted on website soon

▪ Rubric and grades will be found on Gradescope

▪ Regrade requests will be open for a short time after grade
release

▪ Don’t freak out about your grade!
• Midterm clobber policy can help

2

CSE351, Autumn 2019L15: Buffer Overflows

Buffer Overflows

❖ Address space layout (more details!)

❖ Input buffers on the stack

❖ Overflowing buffers and injecting code

❖ Defenses against buffer overflows

3

CSE351, Autumn 2019L15: Buffer Overflows

Review: General Memory Layout

❖ Stack

▪ Local variables (procedure context)

❖ Heap

▪ Dynamically allocated as needed

▪ malloc(), calloc(), new, …

❖ Statically allocated Data
▪ Read/write: global variables (Static Data)

▪ Read-only: string literals (Literals)

❖ Code/Instructions

▪ Executable machine instructions

▪ Read-only

4

not drawn to scale

Instructions

Literals

Static Data

Heap

Stack

0

2N-1

CSE351, Autumn 2019L15: Buffer Overflows

x86-64 Linux Memory Layout

❖ Stack

▪ Runtime stack has 8 MiB limit

❖ Heap

▪ Dynamically allocated as needed

▪ malloc(), calloc(), new, …

❖ Statically allocated data (Data)
▪ Read-only: string literals

▪ Read/write: global arrays and variables

❖ Code / Shared Libraries

▪ Executable machine instructions

▪ Read-only

5

Hex Address

0x00007FFFFFFFFFFF

0x000000

0x400000

Stack

Instructions

Data

Heap

Shared
Libraries

Heap

This is extra (non-testable) material

CSE351, Autumn 2019L15: Buffer Overflows

Memory Allocation Example

6

char big_array[1L<<24]; /* 16 MB */

char huge_array[1L<<31]; /* 2 GB */

int global = 0;

int useless() { return 0; }

int main()

{

void *p1, *p2, *p3, *p4;

int local = 0;

p1 = malloc(1L << 28); /* 256 MB */

p2 = malloc(1L << 8); /* 256 B */

p3 = malloc(1L << 32); /* 4 GB */

p4 = malloc(1L << 8); /* 256 B */

/* Some print statements ... */

}

not drawn to scale

Where does everything go?

Stack

Instructions

Data

Heap

Shared
Libraries

Heap

CSE351, Autumn 2019L15: Buffer Overflows

Memory Allocation Example

7

char big_array[1L<<24]; /* 16 MB */

char huge_array[1L<<31]; /* 2 GB */

int global = 0;

int useless() { return 0; }

int main()

{

void *p1, *p2, *p3, *p4;

int local = 0;

p1 = malloc(1L << 28); /* 256 MB */

p2 = malloc(1L << 8); /* 256 B */

p3 = malloc(1L << 32); /* 4 GB */

p4 = malloc(1L << 8); /* 256 B */

/* Some print statements ... */

}

not drawn to scale

Where does everything go?

Stack

Instructions

Data

Heap

Shared
Libraries

Heap

CSE351, Autumn 2019L15: Buffer Overflows

What Is a Buffer?

❖ A buffer is an array used to temporarily store data

❖ You’ve probably seen “video buffering…”

▪ The video is being written into a buffer before being played

❖ Buffers can also store user input

8

CSE351, Autumn 2019L15: Buffer Overflows

Reminder: x86-64/Linux Stack Frame

❖ Caller’s Stack Frame
▪ Arguments (if > 6 args) for this call

❖ Current/ Callee Stack Frame
▪ Return address

• Pushed by call instruction

▪ Old frame pointer (optional)

▪ Caller-saved pushed before setting up
arguments for a function call

▪ Callee-saved pushed before using
long-term registers

▪ Local variables
(if can’t be kept in registers)

▪ “Argument build” area
(Need to call a function with >6
arguments? Put them here)

9

Return Addr

Saved
Registers

+
Local

Variables

Argument
Build

(Optional)

Old %rbp

Arguments
7, 8, …

Caller
Frame

Frame pointer
%rbp

Stack pointer
%rsp

(Optional)

Lower Addresses

Higher Addresses

CSE351, Autumn 2019L15: Buffer Overflows

Buffer Overflow in a Nutshell

❖ C does not check array bounds

▪ Many Unix/Linux/C functions don’t check argument sizes

▪ Allows overflowing (writing past the end) of buffers (arrays)

❖ “Buffer Overflow” = Writing past the end of an array

❖ Characteristics of the traditional Linux memory layout
provide opportunities for malicious programs

▪ Stack grows “backwards” in memory

▪ Data and instructions both stored in the same memory

10

CSE351, Autumn 2019L15: Buffer Overflows

Buffer Overflow in a Nutshell

❖ Stack grows down towards lower
addresses

❖ Buffer grows up towards higher
addresses

❖ If we write past the end of the
array, we overwrite data on the
stack!

11Lower Addresses

buf[0]

buf[7]

\0

‘o’

‘l’

‘l’

‘e’

‘h’

Enter input: hello

00

00

00

00

00

40

dd

bf

Return
Address

Higher Addresses

No overflow ☺

CSE351, Autumn 2019L15: Buffer Overflows

Buffer Overflow in a Nutshell 00

00

00

00

00

40

dd

bf

❖ Stack grows down towards lower
addresses

❖ Buffer grows up towards higher
addresses

❖ If we write past the end of the
array, we overwrite data on the
stack!

12Lower Addresses

Higher Addresses

buf[0]

buf[7]

Return
Address

Enter input: helloabcdef

Buffer overflow! 

CSE351, Autumn 2019L15: Buffer Overflows

Buffer Overflow in a Nutshell

❖ Buffer overflows on the stack can overwrite
“interesting” data

▪ Attackers just choose the right inputs

❖ Simplest form (sometimes called “stack smashing”)

▪ Unchecked length on string input into bounded array causes
overwriting of stack data

▪ Try to change the return address of the current procedure

❖ Why is this a big deal?

▪ It was the #1 technical cause of security vulnerabilities
• #1 overall cause is social engineering / user ignorance

13

CSE351, Autumn 2019L15: Buffer Overflows

String Library Code

❖ Implementation of Unix function gets()

▪ What could go wrong in this code?

14

/* Get string from stdin */

char* gets(char* dest) {

int c = getchar();

char* p = dest;

while (c != EOF && c != '\n') {

*p++ = c;

c = getchar();

}

*p = '\0';

return dest;

}

pointer to start
of an array

same as:
*p = c;

p++;

CSE351, Autumn 2019L15: Buffer Overflows

String Library Code

❖ Implementation of Unix function gets()

▪ No way to specify limit on number of characters to read

❖ Similar problems with other Unix functions:
▪ strcpy: Copies string of arbitrary length to a dst

▪ scanf, fscanf, sscanf, when given %s specifier
15

/* Get string from stdin */

char* gets(char* dest) {

int c = getchar();

char* p = dest;

while (c != EOF && c != '\n') {

*p++ = c;

c = getchar();

}

*p = '\0';

return dest;

}

CSE351, Autumn 2019L15: Buffer Overflows

Vulnerable Buffer Code

16

void call_echo() {

echo();

}

/* Echo Line */

void echo() {

char buf[8]; /* Way too small! */

gets(buf);

puts(buf);

}

unix> ./buf-nsp

Enter string: 123456789012345

123456789012345

unix> ./buf-nsp

Enter string: 12345678901234567

Segmentation Fault

unix> ./buf-nsp

Enter string: 1234567890123456

Illegal instruction

CSE351, Autumn 2019L15: Buffer Overflows

0000000000400597 <echo>:

400597: 48 83 ec 18 sub $0x18,%rsp

... ... calls printf ...

4005aa: 48 8d 7c 24 08 lea 0x8(%rsp),%rdi

4005af: e8 d6 fe ff ff callq 400480 <gets@plt>

4005b4: 48 89 7c 24 08 lea 0x8(%rsp),%rdi

4005b9: e8 b2 fe ff ff callq 4004a0 <puts@plt>

4005be: 48 83 c4 18 add $0x18,%rsp

4005c2: c3 retq

Buffer Overflow Disassembly (buf-nsp)

17

00000000004005c3 <call_echo>:

4005c3: 48 83 ec 08 sub $0x8,%rsp

4005c7: b8 00 00 00 00 mov $0x0,%eax

4005cc: e8 c6 ff ff ff callq 400597 <echo>

4005d1: 48 83 c4 08 add $0x8,%rsp

4005d5: c3 retq

call_echo:

echo:

return address

CSE351, Autumn 2019L15: Buffer Overflows

Buffer Overflow Stack

18

echo:

subq $24, %rsp

...

leaq 8(%rsp), %rdi

call gets

...

/* Echo Line */

void echo()

{

char buf[8]; /* Way too small! */

gets(buf);

puts(buf);

}

Before call to gets

Stack frame for
call_echo

Return address
(8 bytes)

8 bytes unused

[7] [6] [5] [4]

[3] [2] [1] [0]

8 bytes unused

buf

⟵%rsp

Note: addresses increasing right-to-left, bottom-to-top

CSE351, Autumn 2019L15: Buffer Overflows

Buffer Overflow Example

19

void echo()

{

char buf[8];

gets(buf);

. . .

}

. . .

4005cc: callq 400597 <echo>

4005d1: add $0x8,%rsp

. . .

call_echo:

Before call to gets

Stack frame for
call_echo

00 00 00 00

00 40 05 d1

8 bytes unused

[7] [6] [5] [4]

[3] [2] [1] [0]

8 bytes unused

buf

⟵%rsp

echo:

subq $24, %rsp

...

leaq 8(%rsp), %rdi

call gets

...

CSE351, Autumn 2019L15: Buffer Overflows

Buffer Overflow Example #1

20

unix> ./buf-nsp

Enter string: 123456789012345

123456789012345

Overflowed buffer, but did not corrupt state

Stack frame for
call_echo

00 00 00 00

00 40 05 d1

00 35 34 33

32 31 30 39

38 37 36 35

34 33 32 31

8 bytes unused

call_echo:

After call to gets

Note: Digit “𝑁” is
just 0x3𝑁 in ASCII!

void echo()

{

char buf[8];

gets(buf);

. . .

}

. . .

4005cc: callq 400597 <echo>

4005d1: add $0x8,%rsp

. . .buf

⟵%rsp

echo:

subq $24, %rsp

...

leaq 8(%rsp), %rdi

call gets

...

CSE351, Autumn 2019L15: Buffer Overflows

Buffer Overflow Example #2

21

unix> ./buf-nsp

Enter string: 1234567890123456

Illegal instruction

Overflowed buffer and corrupted return pointer

call_echo:

After call to gets
void echo()

{

char buf[8];

gets(buf);

. . .

}

buf

⟵%rsp

Stack frame for
call_echo

00 00 00 00

00 40 05 00

36 35 34 33

32 31 30 39

38 37 36 35

34 33 32 31

8 bytes unused

. . .

4005cc: callq 400597 <echo>

4005d1: add $0x8,%rsp

. . .

echo:

subq $24, %rsp

...

leaq 8(%rsp), %rdi

call gets

...

CSE351, Autumn 2019L15: Buffer Overflows

Buffer Overflow Example #2 Explained

22

00000000004004f0 <deregister_tm_clones>:

4004f0: push %rbp

4004f1: mov $0x601040,%eax

4004f6: cmp $0x601040,%rax

4004fc: mov %rsp,%rbp

4004ff: je 400518

400501: mov $0x0,%eax

400506: test %rax,%rax

400509: je 400518

40050b: pop %rbp

40050c: mov $0x601040,%edi

400511: jmpq *%rax

400513: nopl 0x0(%rax,%rax,1)

400518: pop %rbp

400519: retq

“Returns” to a byte that is not the beginning of an instruction,
so program signals SIGILL, Illegal instruction

⟵%rsp

After return from echo

buf

Stack frame for
call_echo

00 00 00 00

00 40 05 00

36 35 34 33

32 31 30 39

38 37 36 35

34 33 32 31

8 bytes unused

CSE351, Autumn 2019L15: Buffer Overflows

Malicious Use of Buffer Overflow:
Code Injection Attacks

❖ Input string contains byte representation of executable code

❖ Overwrite return address A with address of buffer B

❖ When bar() executes ret, will jump to exploit code
23

int bar() {

char buf[64];

gets(buf);

...

return ...;

}

void foo(){

bar();

A:...

}

return address A

Stack after call to gets()

A (return addr)

foo

stack frame

bar

stack frame

B

data written
by gets()

High Addresses

buf starts here
exploit code

pad

Low Addresses

A B

CSE351, Autumn 2019L15: Buffer Overflows

Peer Instruction Question

❖ smash_me is vulnerable to stack smashing!

❖ What is the minimum number of characters that
gets must read in order for us to change the return
address to a stack address?

▪ For example: (0x00 00 7f ff CA FE F0 0D)

24

Previous
stack frame

00 00 00 00

00 40 05 d1

. . .

[0]

smash_me:

subq $0x40, %rsp

...

leaq 16(%rsp), %rdi

call gets

...

A. 27
B. 30
C. 51
D. 54
E. We’re lost…

CSE351, Autumn 2019L15: Buffer Overflows

Exploits Based on Buffer Overflows

❖ Distressingly common in real programs

▪ Programmers keep making the same mistakes 

▪ Recent measures make these attacks much more difficult

❖ Examples across the decades

▪ Original “Internet worm” (1988)

▪ Heartbleed (2014, affected 17% of servers)
• Similar issue in Cloudbleed (2017)

▪ Hacking embedded devices
• Cars, Smart homes, Planes

25

Buffer overflow bugs can allow attackers to
execute arbitrary code on victim machines

CSE351, Autumn 2019L15: Buffer Overflows

Example: the original Internet worm (1988)

❖ Exploited a few vulnerabilities to spread
▪ Early versions of the finger server (fingerd) used gets()

to read the argument sent by the client:
• finger droh@cs.cmu.edu

▪ Worm attacked fingerd server with phony argument:
• finger “exploit-code padding new-return-addr”

• Exploit code: executed a root shell on the victim machine with a
direct connection to the attacker

❖ Scanned for other machines to attack

▪ Invaded ~6000 computers in hours (10% of the Internet)
• see June 1989 article in Comm. of the ACM

▪ The author of the worm (Robert Morris*) was prosecuted…

26

http://dl.acm.org/citation.cfm?id=66095

CSE351, Autumn 2019L15: Buffer Overflows

Example: Heartbleed

27

CSE351, Autumn 2019L15: Buffer Overflows

Example: Heartbleed

28

CSE351, Autumn 2019L15: Buffer Overflows

Example: Heartbleed

29

CSE351, Autumn 2019L15: Buffer Overflows

Heartbleed (2014)

❖ Buffer over-read in OpenSSL
▪ Open source security library

▪ Bug in a small range of versions

❖ “Heartbeat” packet
▪ Specifies length of message

▪ Server echoes it back

▪ Library just “trusted” this length

▪ Allowed attackers to read contents
of memory anywhere they wanted

❖ Est. 17% of Internet affected
▪ “Catastrophic”

▪ Github, Yahoo, Stack Overflow,
Amazon AWS, ...

30

By FenixFeather - Own work, CC BY-SA 3.0,
https://commons.wikimedia.org/w/index.php?curid=32276981

CSE351, Autumn 2019L15: Buffer Overflows

❖ UW CSE research from 2010 demonstrated wirelessly
hacking a car using buffer overflow

❖ Overwrote the onboard control system’s code

▪ Disable brakes

▪ Unlock doors

▪ Turn engine on/off

Hacking Cars

31

http://www.autosec.org/pubs/cars-oakland2010.pdf

CSE351, Autumn 2019L15: Buffer Overflows

Hacking DNA Sequencing Tech

❖ Potential for malicious code to be encoded in DNA!

❖ Attacker can gain control of DNA sequencing machine
when malicious DNA is read

❖ Ney et al. (2017)

▪ https://dnasec.cs.washington.edu/

32

https://dnasec.cs.washington.edu/

CSE351, Autumn 2019L15: Buffer Overflows

Dealing with buffer overflow attacks

1) Employ system-level protections

2) Avoid overflow vulnerabilities

3) Have compiler use “stack canaries”

33

CSE351, Autumn 2019L15: Buffer Overflows

1) System-Level Protections

❖ Non-executable code segments

❖ In traditional x86, can mark
region of memory as either
“read-only” or “writeable”

▪ Can execute anything readable

❖ x86-64 added explicit “execute”
permission

❖ Stack marked as non-executable

▪ Do NOT execute code in Stack,
Static Data, or Heap regions

▪ Hardware support needed

34

Stack after call
to gets()

B

foo
stack
frame

bar
stack
frame

B

exploit
code

paddata written
by gets()

Any attempt to execute this code will fail

CSE351, Autumn 2019L15: Buffer Overflows

1) System-Level Protections

❖ Non-executable code segments

▪ Wait, doesn’t this fix everything?

❖ Works well, but can’t always use it

❖ Many embedded devices do not
have this protection

▪ Cars

▪ Smart homes

▪ Pacemakers

❖ Some exploits still work!
▪ Return-oriented programming

▪ Return to libc attack

▪ JIT-spray attack

35

Stack after call
to gets()

B

foo
stack
frame

bar
stack
frame

B

exploit
code

paddata written
by gets()

Any attempt to execute this code will fail

CSE351, Autumn 2019L15: Buffer Overflows

1) System-Level Protections

❖ Randomized stack offsets
▪ At start of program, allocate random amount

of space on stack

▪ Shifts stack addresses for entire program

• Addresses will vary from one run to another

▪ Makes it difficult for hacker to predict
beginning of inserted code

❖ Example: Code from Slide 6 executed 5
times; address of variable local =

• 0x7ffd19d3f8ac

• 0x7ffe8a462c2c

• 0x7ffe927c905c

• 0x7ffefd5c27dc

• 0x7fffa0175afc

▪ Stack repositioned each time program executes
36

main’s
stack frame

Other
functions’

stack frames

Random
allocation

B?

B?

exploit
code

pad

Low Addresses

High Addresses

CSE351, Autumn 2019L15: Buffer Overflows

2) Avoid Overflow Vulnerabilities in Code

❖ Use library routines that limit string lengths
▪ fgets instead of gets (2nd argument to fgets sets limit)

▪ strncpy instead of strcpy

▪ Don’t use scanf with %s conversion specification
• Use fgets to read the string

• Or use %ns where n is a suitable integer

37

/* Echo Line */

void echo()

{

char buf[8]; /* Way too small! */

fgets(buf, 8, stdin);

puts(buf);

}

CSE351, Autumn 2019L15: Buffer Overflows

2) Avoid Overflow Vulnerabilities in Code

❖ Alternatively, don’t use C - use a language that does
array index bounds check

▪ Buffer overflow is impossible in Java

• ArrayIndexOutOfBoundsException

▪ Rust language was designed with security in mind

• Panics on index out of bounds, plus more protections

38

CSE351, Autumn 2019L15: Buffer Overflows

3) Stack Canaries

❖ Basic Idea: place special value (“canary”) on stack just
beyond buffer

▪ Secret value that is randomized before main()

▪ Placed between buffer and return address

▪ Check for corruption before exiting function

❖ GCC implementation
▪ -fstack-protector

39

unix>./buf

Enter string: 12345678

12345678

unix> ./buf

Enter string: 123456789

*** stack smashing detected ***

CSE351, Autumn 2019L15: Buffer Overflows

Protected Buffer Disassembly (buf)

40

400607: sub $0x18,%rsp

40060b: mov %fs:0x28,%rax

400614: mov %rax,0x8(%rsp)

400619: xor %eax,%eax

... ... call printf ...

400625: mov %rsp,%rdi

400628: callq 400510 <gets@plt>

40062d: mov %rsp,%rdi

400630: callq 4004d0 <puts@plt>

400635: mov 0x8(%rsp),%rax

40063a: xor %fs:0x28,%rax

400643: jne 40064a <echo+0x43>

400645: add $0x18,%rsp

400649: retq

40064a: callq 4004f0 <__stack_chk_fail@plt>

echo:

This is extra
(non-testable)

material

CSE351, Autumn 2019L15: Buffer Overflows

Setting Up Canary

41

echo:

. . .

movq %fs:40, %rax # Get canary

movq %rax, 8(%rsp) # Place on stack

xorl %eax, %eax # Erase canary

. . .

/* Echo Line */

void echo()

{

char buf[8]; /* Way too small! */

gets(buf);

puts(buf);

}

Segment register
(don’t worry about it)

Before call to gets

This is extra
(non-testable)

material

Stack frame for
call_echo

Return address
(8 bytes)

Canary
(8 bytes)

[7][6][5][4]

[3][2][1][0] buf ⟵%rsp

CSE351, Autumn 2019L15: Buffer Overflows

Checking Canary

42

echo:

. . .

movq 8(%rsp), %rax # retrieve from Stack

xorq %fs:40, %rax # compare to canary

jne .L4 # if not same, FAIL

. . .

.L4: call __stack_chk_fail

Input: 1234567

Stack frame for
call_echo

Return address
(8 bytes)

Canary
(8 bytes)

00 37 36 35

34 33 32 31

After call to gets
/* Echo Line */

void echo()

{

char buf[8]; /* Way too small! */

gets(buf);

puts(buf);

}

This is extra
(non-testable)

material

buf ⟵%rsp

CSE351, Autumn 2019L15: Buffer Overflows

Summary of Prevention Measures

1) Employ system-level protections

▪ Code on the Stack is not executable

▪ Randomized Stack offsets

2) Avoid overflow vulnerabilities

▪ Use library routines that limit string lengths

▪ Use a language that makes them impossible

3) Have compiler use “stack canaries”

43

CSE351, Autumn 2019L15: Buffer Overflows

Think this is cool?

❖ You’ll love Lab 3 😉

▪ Released today, due next Friday (11/8)

▪ Check out the buffer overflow simulator!

❖ Take CSE 484 (Security)

▪ Several different kinds of buffer overflow exploits

▪ Many ways to counter them

❖ Nintendo fun!

▪ Using glitches to rewrite code:
https://www.youtube.com/watch?v=TqK‐2jUQBUY

▪ Flappy Bird in Mario:
https://www.youtube.com/watch?v=hB6eY73sLV

44

https://www.youtube.com/watch?v=TqK‐2jUQBUY
https://www.youtube.com/watch?v=hB6eY73sLV

CSE351, Autumn 2019L15: Buffer Overflows

Extra Notes about %rbp

❖ %rbp is used to store the frame pointer

▪ Name comes from “base pointer”

❖ You can refer to a variable on the stack as
%rbp+offset

❖ The base of the frame will never change, so each
variable can be uniquely referred to with its offset

❖ The top of the stack (%rsp) may change, so referring
to a variable as %rsp-offset is less reliable

▪ For example, if you need save a variable for a function call,
pushing it onto the stack changes %rsp

45

This is extra
(non-testable)

material

