YA/ UNIVERSITY of WASHINGTON LO8: x86-64 Programming | CSE351, Autumn 2019

x86-64 Programming |

CSE 351 Autumn 2019

Instructor:
Justin Hsia

Teaching Assistants:
Andrew Hu
Antonio Castelli
Cosmo Wang
Diya Joy

lvy Yu

Kaelin Laundry
Maurice Montag
Melissa Birchfield
Millicent Li

Suraj Jagadeesh

Prove you are human:

0.1+0.2=7?

WELCOME TO
THE SECRET 0.30000000000000004

ROBOT INTERNET

http://www.smbc-comics.com/?id=2999




YA/ UNIVERSITY of WASHINGTON LO8: x86-64 Programming | CSE351, Autumn 2019

Administrivia
+» hw7 due Monday, hw8 due Wednesday

+» Lab 1b due Monday (10/14) at 11:59 pm

" You have late day tokens available



YA/ UNIVERSITY of WASHINGTON

Roadmap
C:

L0O8: x86-64 Programming |

Java:

car *c = malloc(sizeof (car));

c->miles = 100;
c->gals = 17;
float mpg = get mpg(c);

Car ¢ = new Car();
c.setMiles (100) ;
c.setGals(17);
float mpg =

CSE351, Autumn 2019

Memory & data
Integers & floats
x86 assembly
Procedures & stacks
Executables

free (c); c.getMPG () ; Arrays & structs
— - —_— Memory & caches
Assembly get_mpg: Processes
. pushg Srbp )
language: movq 4rsp, rbp Virtual memory
.. Memory allocation
popq srbp Javavs. C
ret ¢‘
Machine 0111010000011000
ode: 100011010000010000000010
code. 1000100111000010
110000011111101000011111
Computer

system:




YA/ UNIVERSITY of WASHINGTON LO8: x86-64 Programming | CSE351, Autumn 2019

Architecture Sits at the Hardware Interface

Source code Compiler Architecture Hardware
Different applications Perform optimizations, Instruction set Ditferent
or algorithms generate instructions implementations
fmmmmm oo N Intel Pentium 4
i C Language :
| N |
: Pro : Intel Core 2
! gram , ‘ Smmmmmm - .
A ' '
! GCC \ Xx86-64 i Intel Core i7
| |
I —————————— )
| T )
| 1
l B
| AMD Athlon
i Clang
|
: Your ‘ ; ‘ s .
' | program ! ! '
| P9 : Ak ARM Cortex-A53
G , ' (AArch64/A64) |
oo b
Apple A7




YA/ UNIVERSITY of WASHINGTON LO8: x86-64 Programming | CSE351, Autumn 2019

Definitions

+ Architecture (ISA): The parts of a processor design
that one needs to understand to write assembly code

= “What is directly visible to software”

+» Microarchitecture: Implementation of the
architecture

= CSE/EE 469



YA/ UNIVERSITY of WASHINGTON

L08: x86-64 Programming |

Instruction Set Architectures

« The ISA defines:

" The system’s state (e.g. registers, memory, program

counter)

" The instructions the CPU can execute

CSE351, Autumn 2019

" The effect that each of these instructions will have on the

system state

CPU

PC

Registers

Memory




YA/ UNIVERSITY of WASHINGTON LO8: x86-64 Programming | CSE351, Autumn 2019

Instruction Set Philosophies

+» Complex Instruction Set Computing (CISC): Add more

and more elaborate and specialized instructions as
needed

= |ots of tools for programmers to use, but hardware must be
able to handle all instructions

= x86-64 is CISC, but only a small subset of instructions
encountered with Linux programs

%+ Reduced Instruction Set Computing (RISC): Keep

instruction set small and regular
= Easier to build fast hardware

= |et software do the complicated operations by composing
simpler ones



YA/ UNIVERSITY of WASHINGTON LO8: x86-64 Programming | CSE351, Autumn 2019

General ISA Design Decisions

< Instructions

" What instructions are available? What do they do?
"= How are they encoded?

+» Registers
" How many registers are there?
" How wide are they?

< Memory

" How do you specify a memory location?



YA/ UNIVERSITY of WASHINGTON

L0O8: x86-64 Programming |

CSE351, Autumn 2019

Mainstream ISAs

®

intel

x86
Designer Intel, AMD
Bits 16-bit, 32-bit and 64-bit
Introduced 1978 (16-bit), 1985 (32-bit), 2003
(64-bit)
Design CISC
Type Register-memory

Encoding \Variable (1 to 15 bytes)

Endianness Little

Macbooks & PCs
(Core i3, i5, i7, M)
X86-64 Instruction Set

ARM

ARM architectures

Designer ARM Holdings

Bits 32-bit, 64-bit

Introduced 1985; 31 years ago

Design RISC

Type Register-Register

AArch64/A64 and AArch32/A32
use 32-bit instructions, T32
(Thumb-2) uses mixed 16- and

32-bit instructions. ARMv7 user-
space compatibilitym

Encoding

Endianness Bi (little as default)

Smartphone-like devices
(iPhone, iPad, Raspberry Pi)
ARM Instruction Set

MIIFPS

MIPS
Designer MIPS Technologies, Inc.
Bits 64-bit (32—64)
Introduced 1981; 35 years ago
Design RISC
Type Register-Register
Encoding Fixed
Endianness Bi

Digital home & networking
equipment

(Blu-ray, PlayStation 2)
MIPS Instruction Set




YA/ UNIVERSITY of WASHINGTON LO8: x86-64 Programming | CSE351, Autumn 2019

Writing Assembly Code? In 2019???

+» Chances are, you’ll never write a program in
assembly, but understanding assembly is the key to
the machine-level execution model:

= Behavior of programs in the presence of bugs
- When high-level language model breaks down

" Tuning program performance

- Understand optimizations done/not done by the compiler

- Understanding sources of program inefficiency
" Implementing systems software

- What are the “states” of processes that the OS must manage

- Using special units (timers, I/O co-processors, etc.) inside processor!
" Fighting malicious software

- Distributed software is in binary form
10



YA/ UNIVERSITY of WASHINGTON LO8: x86-64 Programming | CSE351, Autumn 2019

Assembly Programmer’s View

LA Addresses MY
PC Registers Sat e Code
< > * Data
Condition Instructions e Stack
Codes :

+» Programmer-visible state
= PC: the Program Counter (3rip in x86-64)

- Address of next instruction

= Named registers + Memory
- Together in “register file” = Byte-addressable array
Heavily used program data " Code and user data
= Condition codes " |ncludes the Stack (for
- Store status information about most recent supporting procedures)

arithmetic operation

Used for conditional branching 11



YA/ UNIVERSITY of WASHINGTON LO8: x86-64 Programming |

x86-64 Assembly “Data Types”

L)

0‘0

Integral data of 1, 2, 4, or 8 bytes
= Data values
= Addresses

Floating point data of 4, 8, 10 or 2x8 or 4x4 or 8x2

= Different registers for those (e.g. $xmm1, $ymm?2)

*

CSE351, Autumn 2019

5 Not covered
In 351

= Come from extensions to x86 (SSE, AVX, ...)

+» No aggregate types such as arrays or structures
= Just contiguously allocated bytes in memory
< TwO common syntaxes

= “AT&T”: used by our course, slides, textbook, gnu tools, ...
= “Intel”: used by Intel documentation, Intel tools, ...
" Must know which you’re reading

12



YA/ UNIVERSITY of WASHINGTON LO8: x86-64 Programming |

CSE351, Autumn 2019

What is a Register?

« A location in the CPU that stores a small amount of

data, which can be accessed very quickly (once every
clock cycle)

+ Registers have names, not addresses
" |n assembly, they start with % (e.g. $rsi)

+ Registers are at the heart of assembly programming

" They are a precious commodity in all architectures, but
especially x86

13



LO8: x86-64 Programming | CSE351, Autumn 2019

YA/ UNIVERSITY of WASHINGTON

x86-64 Integer Registers — 64 bits wide

Srax Seax sr8 $r8d

srbx $ebx 5r9 3r9d

$rcx Secx $rl0 $rl0d
srdx $edx srll %rlld
$rsi %esi srl2 $rl2d
srdi $edi %rl3 %rl3d
3Irsp esp $rld $rldd
$rbp %ebp srlS %rl5d

= Can reference low-order 4 bytes (also low-order 2 & 1 bytes)

14



YA/ UNIVERSITY of WASHINGTON LO8: x86-64 Programming | CSE351, Autumn 2019

Some History: IA32 Registers — 32 bits wide

-~
$eax $ax $ah $al accumulate
$ecx $cx %ch $cl counter
= edx $dx $dh $dl data
0 <
g $ebx $bx $bh $bl base
g
$esi1i $si source index
sedi %di destination ind
_ ceql sd1 estination index
%esp Isp stack pointer
%ebp sbp base pointer
\ )
Y
16-bit virtual registers Name Origin

(backwards compatibility) (mostly obsolete)
15



YA/ UNIVERSITY of WASHINGTON

Memory

Addresses
" Ox7FFFD024C3DC

Big
= ~8GiB

Slow
= ~50-100 ns

Dynamic

"= Can “grow” as needed
while program runs

vs.

VS.

VS.

VS.

VS.

L08: x86-64 Programming | CSE351, Autumn 2019

Registers

Names

Srdi

Small
(16 x 8 B) =128 B

Fast

sub-nanosecond timescale

Static

fixed number in hardware

16



YA/ UNIVERSITY of WASHINGTON LO8: x86-64 Programming | CSE351, Autumn 2019

Three Basic Kinds of Instructions

1) Transfer data between memory and register

" |oad data from memory into register

* $reg =Meml[address] Remember: Memory
= Store register data into memory 's indexed just like an
array of bytes!

- Memladdress] = $reg

2) Perform arithmetic operation on register or memory
data

" . =43 + Db; z = X << y; 1 =h & g;

3) Control flow: what instruction to execute next
= Unconditional jumps to/from procedures
" Conditional branches

17



YA/ UNIVERSITY of WASHINGTON LO8: x86-64 Programming | CSE351, Autumn 2019

Operand types

+» Immediate: Constant integer data srax
= Examples: $0x400, $-533 $rcx
= Like C literal, but prefixed with 'S’ o rdx
" Encoded with 1, 2, 4, or 8 bytes
. . . srbx
depending on the instruction
+~ Register: 1 of 16 integer registers srsi
" Examples: $rax, %$rl3 srdi
= But $rsp reserved for special use STrSp
i : :
chers have special uses for particular 3 rbp
instructions
+» Memory: Consecutive bytes of memory SN
(o)

at a computed address
= Simplest example: (%rax)

= Various other “address modes”
18



YA/ UNIVERSITY of WASHINGTON LO8: x86-64 Programming |

x86-64 Introduction

+ Data transfer instruction (mov)
+» Arithmetic operations

» Memory addressing modes
" swap example

+» Address computation instruction (1ea)

CSE351, Autumn 2019

19



YA/ UNIVERSITY of WASHINGTON LO8: x86-64 Programming | CSE351, Autumn 2019

Moving Data

+ General form: mov  source, destination
" Missing letter () specifies size of operands

" Note that due to backwards-compatible support for 8086
programs (16-bit machines!), “word” means 16 bits = 2 bytes
In X86 instruction names

= |ots of these in typical code

« movb src, dst « movl src, dst
= Move 1-byte “byte” = Move 4-byte “long word”
% MOVW Src, dst % movqg src, dst

" Move 2-byte “word” " Move 8-byte “quad word”

20



YA/ UNIVERSITY of WASHINGTON LO8: x86-64 Programming | CSE351, Autumn 2019

Operand Combinations

Source Dest Src, Dest C Analo
g
4 Reg movqg $0x4, %rax var a = 0x4;
lmm
Mem movg $-147, (%rax) *p a = -147;
movq< Reg Reg movg %rax, Srdx var d = var a;
Mem movg %Srax, (%5rdx) *p d = var a;
KMem Reg movg (Srax), %Srdx var d = *p a;

% Cannot do memory-memory transfer with a single
Instruction

" How would you do it?
21



YA/ UNIVERSITY of WASHINGTON

Maximum of one
memory operand

" Beware argument
order!

No distinction

between signed

and unsigned

« Only arithmetic vs.
logical shifts

How do you

implement
rl + r2”?

L08: x86-64 Programming |

Some Arithmetic Operations

Binary (two-operand) Instructions:

addq src, dst = dst + src
subq src, dst dst=dst-src
imulqg src, dst dst=dst *src
sarq src, dst dst=dst>>src
shrq src, dst dst=dst>>src
shlg src, dst dst=dst<<src
xXorq src, dst dst=dst”src
andq src, dst dst=dsté& src

orq src, dst dst=dst|[ src

t operand size specifier

CSE351, Autumn 2019

(dst += src)

sighed mult
Arithmetic
Logical

(same as salq)

22



YA/ UNIVERSITY of WASHINGTON LO8: x86-64 Programming |

Some Arithmetic Operations

% Unary (one-operand) Instructions:

__Format__| Computation

incqg dst
decq dst
negq dst
notq dst

dst = dst + 1
dst =dst—1
dst = —dst
dst = ~dst

CSE351, Autumn 2019

increment
decrement
negate

bitwise complement

«» See CSPP Section 3.5.5 for more instructions:
mulqg, cgto, 1divqg, divqg

23



L08: x86-64 Programming | CSE351, Autumn 2019

YA/ UNIVERSITY of WASHINGTON

Arithmetic Example

Cnegiser | Usels)

$rdi 15t argument (x)

{

long simple arith(long x, long vy)

long tl = x + y;
long t2 = tl1 * 3;
return t2;

Srsi 2" argument (y)
$rax return value
>
y = X7
y *= 3;

long r = y;
return r;

simple arith:
addqg srdi,
imulqg $3,
movq $rsi,
ret

$rsi
$rsi
$rax

24



YA/ UNIVERSITY of WASHINGTON LO8: x86-64 Programming | CSE351, Autumn 2019

Example of Basic Addressing Modes

void swap (long *xp, long *yp)
{

long t0 = *xp;

long tl = *yp;

*xp = tl;
*yp = t0;
}
swap:

movqg (5rdi), S%Srax
movq (sr

movqg ST (5
movqg %rax, (srsi)
ret

25



YA/ UNIVERSITY of WASHINGTON LO8: x86-64 Programming | CSE351, Autumn 2019

Understanding swap ()

void swap (long *xp, long *yp) Registers Memory

{ —
long t0 = *xp; crdi bl
long tl = *yp; $rsi o
*xp = tl; - =
*yp _ tO; s YaX

} srdx

swap : ‘Register  Variable |
movqg (5rdi), S%Srax srdi &  xp
movqg (srsi), srdx crai o
movq Srdx, (3rdi) ° Yb
movqg S%rax, (%rsi) srax & to
ret ¥%rdx = )

26



YA/ UNIVERSITY of WASHINGTON

L08: x86-64 Programming |

Understanding swap ()

Registers Memory Word
Address
Srdi 0x120 123 | 0x120
5rsi| 0x100 Ox118
o OX]_]_O
2rXaXx
0x108
Srdx
456 | 0x100
swap:
movqg (%rdi), %$rax # tO *XP
movqg (%rsi), Srdx # tl * P
movq %rdx, (%rdi) # *xp tl
movq %rax, (%rsi) # *yp t0

ret

CSE351, Autumn 2019

27



YA/ UNIVERSITY of WASHINGTON

L08: x86-64 Programming |

Understanding swap ()

Registers Memory Word
Address
Srdi 0x120 123 | 0x120
5rsi| 0x100 Ox118
S rax 123 Ox110
0x108
Srdx
456 | 0x100
swap:
movqg (%rdi), %rax # tO *XP
movqg (%rsi), Srdx # tl * P
movq %rdx, (%rdi) # *xp tl
movq %rax, (%rsi) # *yp t0

ret

CSE351, Autumn 2019

28



YA/ UNIVERSITY of WASHINGTON

L08: x86-64 Programming |

Understanding swap ()

Registers Memory Word
Address
Srdi 0x120 123 | 0x120
5rsi| 0x100 Ox118
S rax 123 Ox110
0x108
$rdx 456 |e—
456 | 0x100
swap:
movqg (%rdi), %$rax # tO *XP
movqg (%rsi), S%Srdx # tl * P
movq %rdx, (%rdi) # *xp tl
movq %rax, (%rsi) # *yp t0

ret

CSE351, Autumn 2019

29



YA/ UNIVERSITY of WASHINGTON

L08: x86-64 Programming |

Understanding swap ()

Registers Memory Word
Address
Srdi 0x120 456 | 0x120
5rsi| 0x100 Ox118
S rax 123 Ox110
0x108
Srdx 456
456 | 0x100
swap:
movqg (%rdi), %$rax # tO *XP
movqg (%rsi), Srdx # tl * P
movq %rdx, (%rdi) # *xp tl
movq %rax, (%rsi) # *yp t0

ret

CSE351, Autumn 2019

30



YA/ UNIVERSITY of WASHINGTON

L08: x86-64 Programming |

Understanding swap ()

Registers Memory Word
Address
Srdi 0x120 456 | 0x120
5rsi| 0x100 Ox118
S rax 123 Ox110
\ 0x108
srd 456
* 123 | 0x100
swap:
movqg (%rdi), %$rax # tO *XP
movqg (%rsi), Srdx # tl * P
movq %rdx, (%rdi) # *xp tl
movq %rax, (%rsi) # *yp t0

ret

CSE351, Autumn 2019

31



YA/ UNIVERSITY of WASHINGTON LO8: x86-64 Programming |

Memory Addressing Modes: Basic

+ Indirect: (R) Mem|[Reg[R]]
= Data in register R specifies the memory address

" Like pointer dereference in C

= Example: movq (%rcx), %rax
+» Displacement: D (R) Mem[Reg[R]+D]

= Data in register R specifies the start of some memory region

" Constant displacement D specifies the offset from that
address
= Example: movqg 8 (%rbp), S$rdx

CSE351, Autumn 2019

32



YA/ UNIVERSITY of WASHINGTON

L08: x86-64 Programming |

CSE351, Autumn 2019

Complete Memory Addressing Modes

+ @eneral:

" D(Rb,Ri,S) Mem[Reg[Rb]+Reg[Ri]*S+D]

- Rb: Base register (any register)
- Ri: Index register (any register except $rsp)
- S Scale factor (1, 2, 4, 8) — why these numbers?

Constant displacement value (a.k.a. immediate)

+ Special cases (see CSPP Figure 3.3 on p. 181)

" D(Rb,R1) Mem
" (Rb,Ri,S) Mem]|
" (Rb,R1) Mem
"= (,R1,S) Mem

Reg

Reg

Reg
Reg

Rb.
Rb.
Rb.
Ri.

+Reg
+Reg
+Reg
*S]

R1i
R1
Ri

I]

+D]
*S]

(5=1)
(D=0)

(S=1,D=0)
(Rb=0, D=0)

33



YA/ UNIVERSITY of WASHINGTON LO8: x86-64 Programming | CSE351, Autumn 2019

Address Computation Examples

Srdx 0x£000 D(Rb,Ri,S) -
S rex 0x0100 Mem[Reg[Rb]+Reg[R1i]*S+D]
Expression Address Computation Address

0x8 (%S rdx)

(3rdx, srcx)

(3rdx, $rcx, 4)

0x80 (, $rdx, 2)

34



YA/ UNIVERSITY of WASHINGTON LO8: x86-64 Programming | CSE351, Autumn 2019

Summary

% X86-64 is a complex instruction set computing (CISC)
architecture
" There are 3 types of operands in x86-64
- Immediate, Register, Memory

" There are 3 types of instructions in x86-64

- Data transfer, Arithmetic, Control Flow

+» Memory Addressing Modes: The addresses used for
accessing memory in mov (and other) instructions can

be computed in several different ways

" Base register, index register, scale factor, and displacement
map well to pointer arithmetic operations

35



