Floating Point II
CSE 351 Autumn 2019

Instructor: Justin Hsia
Teaching Assistants: Andrew Hu, Diya Joy, Maurice Montag, Suraj Jagadeesh, Antonio Castelli, Ivy Yu, Melissa Birchfield, Cosmo Wang, Kaelin Laundry, Millicent Li

http://xkcd.com/899/
Administrivia

- hw6 due Friday, hw7 due Monday

- Lab 1a grades hopefully released by end of Sunday (10/13)

- Lab 1b due Monday (10/14)
 - Submit `bits.c` and `lab1Breflect.txt`

- Section tomorrow on Integers and Floating Point
Other Special Cases

- **E = 0xFF, M = 0:** ± ∞
 - e.g. division by 0
 - Still work in comparisons!

- **E = 0xFF, M ≠ 0:** Not a Number (NaN)
 - e.g. square root of negative number, 0/0, ∞−∞
 - NaN propagates through computations
 - Value of M can be useful in debugging

- New largest value (besides ∞)?
 - E = 0xFF has now been taken!
 - E = 0xFE has largest: 1.1...1₂×2¹²⁷ = 2¹²⁸ − 2¹⁰⁴
Floating Point Encoding Summary

<table>
<thead>
<tr>
<th>E</th>
<th>M</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>0x00</td>
<td>0</td>
<td>± 0</td>
</tr>
<tr>
<td>0x00</td>
<td>non-zero</td>
<td>± denorm num</td>
</tr>
<tr>
<td>0x01 – 0xFE</td>
<td>anything</td>
<td>± norm num num</td>
</tr>
<tr>
<td>0xFF</td>
<td>0</td>
<td>± ∞</td>
</tr>
<tr>
<td>0xFF</td>
<td>non-zero</td>
<td>NaN</td>
</tr>
</tbody>
</table>
Floating Point Interpretation Flow Chart

FP Bits → What is the value of E?

- **What is the value of M?**
 - all 0’s: \((-1)^S \times \infty\)
 - all 1’s: NaN
 - anything else: \((-1)^S \times 0. M \times 2^{1-bias}\)
 - anything else: \((-1)^S \times 1. M \times 2^{E-bias}\)

= special case
Floating point topics

- Fractional binary numbers
- IEEE floating-point standard
- **Floating-point operations and rounding**
- Floating-point in C

There are many more details that we won’t cover
- It’s a 58-page standard...
Tiny Floating Point Representation

- We will use the following 8-bit floating point representation to illustrate some key points:

```
  S  E  M
  1  4  3
```

- Assume that it has the same properties as IEEE floating point:
 - bias =
 - encoding of −0 =
 - encoding of +∞ =
 - encoding of the largest (+) normalized # =
 - encoding of the smallest (+) normalized # =
Distribution of Values

- What ranges are NOT representable?
 - Between largest norm and infinity: **Overflow** (Exp too large)
 - Between zero and smallest denorm: **Underflow** (Exp too small)
 - Between norm numbers?

- Given a FP number, what’s the bit pattern of the next largest representable number?
 - What is this “step” when \(\text{Exp} = 0 \)?
 - What is this “step” when \(\text{Exp} = 100 \)?

- Distribution of values is denser toward zero
Floating Point Rounding

- The IEEE 754 standard actually specifies different rounding modes:
 - Round to nearest, ties to nearest even digit
 - Round toward $+\infty$ (round up)
 - Round toward $-\infty$ (round down)
 - Round toward 0 (truncation)

- In our tiny example:
 - Man = 1.001 01 rounded to $M = 0b001$
 - Man = 1.001 11 rounded to $M = 0b010$
 - Man = 1.001 10 rounded to $M = 0b010$
Floating Point Operations: Basic Idea

Value = (-1)^S × Mantissa × 2^Exponent

- x +_f y = Round(x + y)
- x *_f y = Round(x * y)

Basic idea for floating point operations:
- First, compute the exact result
- Then round the result to make it fit into the specified precision (width of M)
 - Possibly over/underflow if exponent outside of range
Mathematical Properties of FP Operations

- **Overflow** yields $\pm\infty$ and **underflow** yields 0
- Floats with value $\pm\infty$ and NaN can be used in operations
 - Result usually still $\pm\infty$ or NaN, but not always intuitive
- Floating point operations do not work like real math, due to **rounding**
 - Not associative: $(3.14+1e100)-1e100 \neq 3.14+(1e100-1e100)$
 - $0 \neq 3.14$
 - Not distributive: $100*(0.1+0.2) \neq 100*0.1+100*0.2$
 - $30.000000000000003553 \neq 30$
 - Not cumulative
 - Repeatedly adding a very small number to a large one may do nothing
Limits of Interest

The following thresholds will help give you a sense of when certain outcomes come into play, but don’t worry about the specifics:

- **FOver** = $2^{\text{bias}+1} = 2^8$
 - This is just larger than the largest representable normalized number

- **FDenorm** = $2^{1-\text{bias}} = 2^{-6}$
 - This is the smallest representable normalized number

- **FUnder** = $2^{1-\text{bias}-m} = 2^{-9}$
 - m is the width of the mantissa field
 - This is the smallest representable denormalized number

This is extra (non-testable) material
Floating Point Encoding Flow Chart

Value v to encode

Is v not a number? No

Yes

NaN
$E =$ all 1’s
$M \neq$ all 0’s

Is $|v|$, when rounded, \geq FOver? No

Yes

$\pm \infty$
$E =$ all 1’s
$M =$ all 0’s

Is $|v|$, when rounded, $< FUnder$? No

Denormed
$E =$ all 0’s
$0.M =$ Man

Yes

± 0
$E =$ all 0’s
$M =$ all 0’s

$E =$ all 0’s
$M =$ all 0’s

Is $|v|$, when rounded, $< FDenorm$? No

Yes

Normed
$E =$ Exp + bias
$1.M =$ Man

= special case
Example Question

- Using our **8-bit** representation, what value gets stored when we try to encode **384** = \(2^8 + 2^7\)?

![Binaire represantatie](image)

- No voting

A. + 256
B. + 384
C. + ∞
D. NaN
E. We’re lost...
Polling Question

Using our 8-bit representation, what value gets stored when we try to encode $2.625 = 2^1 + 2^{-1} + 2^{-3}$?

A. + 2.5
B. + 2.625
C. + 2.75
D. + 3.25
E. We’re lost...

Floating point topics

- Fractional binary numbers
- IEEE floating-point standard
- Floating-point operations and rounding
- Floating-point in C

There are many more details that we won’t cover
 - It’s a 58-page standard...
Floating Point in C

- Two common levels of precision:
 - `float 1.0f` single precision (32-bit)
 - `double 1.0` double precision (64-bit)

- `#include <math.h> to get INFINITY and NAN constants`

- Equality (==) comparisons between floating point numbers are tricky, and often return unexpected results, so just avoid them!
Floating Point Conversions in C

- **Casting between int, float, and double changes the bit representation**
 - `int → float`
 - May be rounded (not enough bits in mantissa: 23)
 - Overflow impossible
 - `int or float → double`
 - Exact conversion (all 32-bit ints representable)
 - `long → double`
 - Depends on word size (32-bit is exact, 64-bit may be rounded)
 - `double or float → int`
 - Truncates fractional part (rounded toward zero)
 - “Not defined” when out of range or NaN: generally sets to T_{min} (even if the value is a very big positive)
Polling Question

- We execute the following code in C. How many bytes are the same (value and position) between i and f?

```c
int i = 384; // 2^8 + 2^7
float f = (float) i;
```

A. 0 bytes
B. 1 byte
C. 2 bytes
D. 3 bytes
E. We’re lost...
Floating Point and the Programmer

```c
#include <stdio.h>

int main(int argc, char* argv[]) {
    float f1 = 1.0;
    float f2 = 0.0;
    int i;
    for (i = 0; i < 10; i++)
        f2 += 1.0/10.0;
    printf("0x%08x 0x%08x\n", *(int*)&f1, *(int*)&f2);
    printf("f1 = %10.9f\n", f1);
    printf("f2 = %10.9f\n\n", f2);

    f1 = 1E30;
    f2 = 1E-30;
    float f3 = f1 + f2;
    printf("f1 == f3? %s\n", f1 == f3 ? "yes" : "no" );

    return 0;
}
```

```
$ ./a.out
0x3f800000  0x3f800001
f1 = 1.000000000
f2 = 1.000000119
f1 == f3? yes
```
Floating Point Summary

- Floats also suffer from the fixed number of bits available to represent them
 - Can get overflow/underflow
 - “Gaps” produced in representable numbers means we can lose precision, unlike ints
 - Some “simple fractions” have no exact representation (e.g. 0.2)
 - “Every operation gets a slightly wrong result”

- Floating point arithmetic not associative or distributive
 - Mathematically equivalent ways of writing an expression may compute different results

- Never test floating point values for equality!
- Careful when converting between ints and floats!
Number Representation Really Matters

- **1991**: Patriot missile targeting error
 - clock skew due to conversion from integer to floating point
- **1996**: Ariane 5 rocket exploded ($1 billion)
 - overflow converting 64-bit floating point to 16-bit integer
- **2000**: Y2K problem
 - limited (decimal) representation: overflow, wrap-around
- **2038**: Unix epoch rollover
 - Unix epoch = seconds since 12am, January 1, 1970
 - signed 32-bit integer representation rolls over to TMin in 2038
- **Other related bugs:**
 - 1982: Vancouver Stock Exchange 10% error in less than 2 years
 - 1994: Intel Pentium FDIV (floating point division) HW bug ($475 million)
 - 1997: USS Yorktown “smart” warship stranded: divide by zero
 - 1998: Mars Climate Orbiter crashed: unit mismatch ($193 million)
Summary

Floating point encoding has many limitations

- Overflow, underflow, rounding
- Rounding is a HUGE issue due to limited mantissa bits and gaps that are scaled by the value of the exponent
- Floating point arithmetic is NOT associative or distributive

Converting between integral and floating point data types *does* change the bits

<table>
<thead>
<tr>
<th>E</th>
<th>M</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>0x00</td>
<td>0</td>
<td>± 0</td>
</tr>
<tr>
<td>0x00</td>
<td>non-zero</td>
<td>± denorm num</td>
</tr>
<tr>
<td>0x01 – 0xFE</td>
<td>anything</td>
<td>± norm num</td>
</tr>
<tr>
<td>0xFF</td>
<td>0</td>
<td>± ∞</td>
</tr>
<tr>
<td>0xFF</td>
<td>non-zero</td>
<td>NaN</td>
</tr>
</tbody>
</table>