YA/ UNIVERSITY of WASHINGTON L03: Memory & Data Il CSE351, Autumn 2019

Memory, Data, & Addressing Il

CSE 351 Autumn 2019

Instructor:
Justin Hsia MAN, | SUCK AT THIS GAME.
_] CAN YOU GIVE ME.
Teaching Assistants: A FEW POINTERS?
Andrew Hu
Antonio Castelli [8:3;%%%!&2
Cosmo Wang Ox 7363682E.
Diya Joy | HATE YGU
lvy Yu
Kaelin Laundry
Maurice Montag M
Melissa Birchfield
Millicent Li

http://xkcd.com/138/

Suraj Jagadeesh

YA/ UNIVERSITY of WASHINGTON L03: Memory & Data Il CSE351, Autumn 2019

Administrivia

% Lab 0 due today @ 11:59 pm

= You will be revisiting this program throughout this class!

+» hw?2 due Wednesday, hw3 due Friday @ 11:00 am

= Autograded, unlimited tries, no late submissions

+» Lab 1a released today, due next Monday (10/7)

" PointersinC
= Reminder: last submission graded, individual work

YA/ UNIVERSITY of WASHINGTON L03: Memory & Data Il CSE351, Autumn 2019

Late Days

You are given 5 |late day tokens for the whole quarter
= Tokens can only apply to Labs

*

"= No benefit to having leftover tokens

Count lateness in days (even if just by a second)

= Special: weekends count as one day

*

= No submissions accepted more than two days late

Late penalty is 20% deduction of your score per day

"= Only late labs are eligible for penalties

>

" Penalties applied at end of quarter to maximize your grade

o®

Use at own risk — don’t want to fall too far behind

" |Intended to allow for unexpected circumstances

YA/ UNIVERSITY of WASHINGTON L03: Memory & Data Il CSE351, Autumn 2019

Review Questions

1) If the word size of a machine is 64-bits, which of the
following is usually true? (pick all that apply)
a) 64 bits is the size of a pointer
b) 64 bits is the size of an integer
c) 64 bits is the width of a register

2) (True/False) By looking at the bits stored in memory,
| can tell if a particular 4-bytes is being used to
represent an integer, floating point number, or
instruction.

3) If the size of a pointer on a machine is 6 bits, the
address space is how many bytes?

YA/ UNIVERSITY of WASHINGTON L03: Memory & Data Il

Memory, Data, and Addressing

+» Representing information as bits and bytes

= Binary, hexadecimal, fixed-widths

*

o

Organizing and addressing data in memory

"= Memory is a byte-addressable array

L)

" Machine “word” size = address size = register size
" Endianness — ordering bytes in memory
» Manipulating data in memory using C
= Assighment
" Pointers, pointer arithmetic, and arrays

+» Boolean algebra and bit-level manipulations

CSE351, Autumn 2019

YA/ UNIVERSITY of WASHINGTON

LO3: Memory & Data Il CSE351, Autumn 2019

Addresses and Pointers in C

« & = “address of” operator
P Z—

* is also used with
variable declarations

« * ="“value at address” or “dereference” operator

int* ptr; {

Declares a variable, ptr, that is a pointer to
(i.e. holds the address of) an int in memory

e

int x = 5
2

Declares two variables, x and vy, that hold ints,
and initializes them to 5 and 2, respectively

int y =

ptr = &Xx; “:{

Sets ptr to the address of x
(“ptr points to x”)

y = 1 + *ptr;

[~

“Dereference ptr”

What is * (&y) ?

Sets v to “1 plus the value stored at the
address held by ptr.” Because ptr
points to x, this is equivalent to y=1+x;

YA/ UNIVERSITY of WASHINGTON

LO3: Memory & Data Il

Assignment in C

+» Avariable is represented by a location

CSE351, Autumn 2019

+ Declaration # initialization (initially holds “garbage”)

» int x, v;

= xis at address 0x04, v is at 0x18 0x00
0x04

Ox08
0x0C
0x10
Ox14
Ox18
Ox1C
0x20
Ox24

Ox00 0Ox01

0x02 0x03

A7

00

32

00

00

01

29

F3

EE

EE

EE

EE

FA

CE

CA

FE

26

00

00

00

00

00

10

00

01

00

00

00

FF

00

F4

96

DE

AD

BE

EF

00

00

00

00

YA/ UNIVERSITY of WASHINGTON L03: Memory & Data Il CSE351, Autumn 2019

[32-bit example J
()

pointers are 32-bits wide

Assignment in C

little-endian

+ Avariable is represented by a location
+ Declaration # initialization (initially holds “garbage”)

o, - et
« int x, y; 0x00 0x01 0x02 Ox03

= xis at address 0x04, v is at 0x18 0x00
O0x04 [00

Ox08
0x0C
0x10
Ox14
Ox18 | 01
Ox1C
0x20
Ox24

01:29}) F3|X

00 ; 00

00 | v

YA/ UNIVERSITY of WASHINGTON L03: Memory & Data Il CSE351, Autumn 2019

[32-bit example J
()

pointers are 32-bits wide

Assignment in C

& = “address of”

. . . * = “dereference”
+ left-hand side = right-hand side;
" |HS must evaluate to a location

= RHS must evaluate to a value (could be an address)

= Store RHS value at LHS location 0x00 0x01 O0x02 Ox03

0x00
0Ox04 | 00
e x = 0; Ox08

0x0C
0x10
Ox14
Ox18 | 01
Ox1C
0x20
Ox24

» int x, vy;

00 1 00 00 [|X

00 ; 00

00 | v

YA/ UNIVERSITY of WASHINGTON L03: Memory & Data Il CSE351, Autumn 2019

[32-bit example J
()

pointers are 32-bits wide

Assignment in C

& = “address of”

. . . * = “dereference”
+ left-hand side = right-hand side;
" |HS must evaluate to a location

= RHS must evaluate to a value (could be an address)

= Store RHS value at LHS location 0x00 0x01 O0x02 Ox03

O0x00
0x04 | 00
e x = 0; 0x08

0x0C
» y = 0x3CD02700, 0x10

N little endian! \Q&‘
Ox18 T 00
Ox1C
0x20
Ox24

» int x, vy;

00 100} 00 |X

27 ' DO

3|y

10

YA/ UNIVERSITY of WASHINGTON L03: Memory & Data Il CSE351, Autumn 2019

[32-bit example J
()

pointers are 32-bits wide

Assignment in C

& = “address of”
* = “dereference”

left-hand side = right-hand side;
" |HS must evaluate to a location
= RHS must evaluate to a value (could be an address)

*

" Store RHS value at LHS location 0x00 0x01 0x02 0x03
. . Ox00 | ¢
#1nt x, y; Ox04]031271D0'!3C|X
X = 0; 0x08 | | |

0x0C R

» y = 0x3CD02700; 0x10 R

) B] Ox14 I
*X =y + 3 0x18 [00 | 27 | DO ! 3C | v

= Get value at v, add 3, store in x 0x1C R

0x20 L

0x24 R

11

YA/ UNIVERSITY of WASHINGTON L03: Memory & Data Il CSE351, Autumn 2019

[32-bit example J
()

pointers are 32-bits wide

Assignment in C

& = “address of”
* = “dereference”

*

left-hand side = right-hand side;
" |HS must evaluate to a location
= RHS must evaluate to a value (could be an address)

" Store RHS value at LHS location 0x00 0x01 0x02 0x03
. . Ox00 | ¢
#1nt x, y; 0Ox04]103 1271 D0 3C|X
X = 0; 0x08 | | |

0x0C R
» y = 0x3CD02700; 0x10 R
) B] Ox14 I
*X =y + 3 0x18 [00 | 27 | DO ! 3C | v

" Get value at v, add 3, store in x 0x1C . . .

i Ox20 | DE ! AD! BE ! EF | Z
* 1nt* z; ox24 |1 1

" 7 is at address 0x20

12

YA/ UNIVERSITY of WASHINGTON L03: Memory & Data Il CSE351, Autumn 2019

[32-bit example J
()

pointers are 32-bits wide

Assignment in C

& = “address of”
* = “dereference”

left-hand side = right-hand side;
" |HS must evaluate to a location
= RHS must evaluate to a value (could be an address)

*

" Store RHS value at LHS location 0x00 0x01 0x02 0x03
. . Ox00 | ¢
#1nt x, y; 0Ox04]103 1271 D0 3C|X
X = 0; 0x08 | | |

0x0C R
» y = 0x3CD02700; 0x10 R
) B 3. Ox14 I
X =Y T 0x18 [00 | 27 | DO ! 3C | v

" Get value at v, add 3, store in x 0x1C . . .

i Ox20] 2410010000 |Z
« 1nt* z = &y + 3,' 0x24 i i i

= Get address of y, “add 3”, store in z

\L Pointer arithmetic] 13

YA/ UNIVERSITY of WASHINGTON L03: Memory & Data Il CSE351, Autumn 2019

Pointer Arithmetic

+» Pointer arithmetic is scaled by the size of target type
" |n this example, sizeof (int) =4
» int* z = &y + 3;
= Getaddressof y,add 3*sizeof (int), storein z
" gy = 0x18 = 1*16! + 8%16° = 24
" 24 + 3*%¥(4) = 36 = 2*16t + 4*16Y = 0x24

% Pointer arithmetic can be dangerous!
" Can easily lead to bad memory accesses
= Be careful with data types and casting

14

YA/ UNIVERSITY of WASHINGTON

LO3: Memory & Data Il

Assignment in C

int x, vy;

x = 0;

y = 0x3CD02700;

X =v + 3;

= Getvalue at y, add 3, store in x
int* z = &y + 35

" Get address of v, add 12, store in z

*'2: }7;
" What does this do?

0x00
0x04
Ox08
0x0C
0x10
Ox14
Ox18
Ox1C
0x20
Ox24

CSE351, Autumn 2019

32-bit example
(pointers are 32-bits wide)

& = “address of”

* = “dereference”

Ox00 0x01 0x02 0x03

03! 27 1 DO ! 3C
00 ! 27 ' DO ! 3C
24 100! 00 ! 00

15

YA/ UNIVERSITY of WASHINGTON L03: Memory & Data Il CSE351, Autumn 2019

[32-bit example J
()

pointers are 32-bits wide

Assignment in C

& = “address of”

. * = “dereference”
« 1nt x, vy;

» x = 0
Y = 0x3CD02700; 0x00 0x01 0x02 0x03
o X = y + 3; 0x00 i i i
Ox04 |03 :27 D0 3C|X
" Getvalue at y, add 3, store in x 0x08 N
. intk o — LA, ox0C[1 1
int* z &Y 3; 0x10 ————
= Get address of y, add 12, storein z 0x14 N
The target of a pointer Ox18] 00 i 27 i DO i 3C |V
is also a location Ox1C : l I
o XZ =y 0x20 |24 100! 00:00|7Z
Ox24 [00 ! 27 1 DO ! 3C

= Get value of vy, put in address

stored in z
16

YA/ UNIVERSITY of WASHINGTON L03: Memory & Data Il CSE351, Autumn 2019

Arrays are adjacent locations in memory
storing the same type of data object

Arrays in C

a (array name) returns the array’s address

Declaration: int a| 64-bit example
ﬁ (pointers are 64-bits wide)
element type Sumber of all]
elements al3]
als]
Ox0O Ox1 Ox2 Ox4 Ox5 Ox6 Ox7

Ox8 Ox9 OxA O OxC OxD OxE OxF

AW\
N\
N

v

0x00
0x08
al0] 0x10
al2] 0x18
al4] 0x20
Ox28
0x30
Ox38
0x40
Ox48

17

YA/ UNIVERSITY of WASHINGTON

Arrays in C

Declaration: int a[6];
Indexing: a[0] = 0x015f;
alb5] = al[0];

LO3: Memory & Data Il

CSE351, Autumn 2019

Arrays are adjacent locations in memory
storing the same type of data object

a (array name) returns the array’s address

&a[i] isthe address of a [0] plus i times
the element size in bytes

0x0
0Ox8

Ox1
0x9

0x2
OxA

0x3
OxB

0x4
OxC

0x5
OxD

0Ox6
OxE

Ox7
OxF

0x00
0x08
0x10
0x18
0x20
O0x28
0x30
0x38
0x40
0x48

5F 10100 ;00

5F

01

00 ! 00

18

YA/ UNIVERSITY of WASHINGTON L03: Memory & Data Il CSE351, Autumn 2019

Arrays are adjacent locations in memory
storing the same type of data object

Arrays in C

a (array name) returns the array’s address

&a[i] isthe address of a [0] plus i times

Declaration: int a[6]; .
the element size in bytes

Indexing: al[0] = 0x015f;
al5] = al0];
No bounds a[6] = O0xBAD;
. Ox0O Ox1 Ox2 O0x3 O0x4 Ox5 Ox6 Ox7
checking: al[-1] = 0xBAD; 0x8 O0x9 OxA OxB OxC OxD OxE OxF
0x00 R
0x08 1 1 TAD!0B!00!00
a[0] 0x10 | 5F 1 01! 00 ! 00 R
al2] o0x18 R ro1
al4] 0Ox20 : !] 5F101:00:00
0x28 [AD!OB:00!00:! | I 1
0x30 R
0x38 | b
0x40 | b
0x48 R

19

YA/ UNIVERSITY of WASHINGTON

Arrays in C

Declaration: int a[6];

Indexing: a[0] = 0x015f;
aldb] = al0];
No bounds a[6] = O0xBAD;
checking: a[-1] = O0xBAD;
Pointers: int* p;
P 0]
* _
P OxA; A14]
| 3

LO3: Memory & Data Il

CSE351, Autumn 2019

Arrays are adjacent locations in memory
storing the same type of data object

a (array name) returns the array’s address

&a[i] isthe address of a [0] plus i times
the element size in bytes

OxO Ox1 Ox2 O0x3 Ox4 Ox5 O0Ox6 Ox7

Ox8 O0Ox9 OxA O0xB O0OxC OxD OxE OxF
0x00 R
0x08 1 1 TAD!0B!00!00
0x10 | OA_' 00 ! 00 ! 00 Lo
0x18 N L L
0x20 LNl ! 5F 1010000
0x28 |AD!'OB IO 00! ! 1 1
oo [T TN T T T
oss [T T N1 T T}
0x40 | 10 1 00 ! 00 ' 00® 00 ! 00 ! 00 ! 00
0x48 IR

20

YA/ UNIVERSITY of WASHINGTON

Arrays in C

Declaration: int a[6];

Indexing: a[0] = 0x015f;
aldb] = al0];
No bounds a[6] = O0xBAD;
checking: a[-1] = O0xBAD;
Pointers: int* p;
P i i; o1 A10]
0w al2]
b = VXA a[4]

array indexing = address arithmetic
(both scaled by the size of the type)

pll] = 0OxB;
*(p+l) = 0xB;

P
p=p+ 2

LO3: Memory & Data Il

CSE351, Autumn 2019

Arrays are adjacent locations in memory
storing the same type of data object

a (array name) returns the array’s address

&a[i] isthe address of a [0] plus i times
the element size in bytes

OxO Ox1 Ox2 O0x3 Ox4 Ox5 O0Ox6 Ox7

Ox8 O0Ox9 OxA O0xB O0OxC OxD OxE OxF
0x00 R
0x08 1 1 TAD!0B!00!00
0x10 | OA! 00 ' 00 ' 00 | OB ! 00 ! 00 ! 00
0x18 N L L
0x20 PN 5F:01!00' 00
0x28 |AD!'OB IO 00! ! 1 1
oo [T T N__ 1T T
ocs [| T INT T T
0x40 | 10 1 00 ! 00 ' 00® 00 ! 00 ! 00 ! 00
0x48 IR

21

LO3: Memory & Data Il CSE351, Autumn 2019

YA/ UNIVERSITY of WASHINGTON

Arrays in C

Declaration: int a[6

17

Arrays are adjacent locations in memory
storing the same type of data object

a (array name) returns the array’s address

&a[i] isthe address of a [0] plus i times
the element size in bytes

Indexing: a[0] = 0x015f;
ald] = al0];
No bounds a[6] = O0xBAD;

. OxO Ox1 Ox2 O0x3 Ox4 Ox5 Ox6 Ox7
checking: al[-1] = 0xBAD; 0x8 O0x9 OxA OxB OxC OxD OxE OxF
Pointers: int* p; O0x00 i i i i i i i

| _ aE.)' oxo8 [1 1 TAD!OB: 00! 00
p:&é[@]- a[0] 0x10 [OA 00 : 00 : 00 |0B:00:00:00
o owm. al2) 0as[0Cc00700700f T
—— df 5L ara) o0 [N T T | SF 010000
array indexing = a ress arithmetic : I : : : : :
(both scaled by the size of the type) 0x28 | AD : 0B . 00 : 00 : : : :
p[1] = OxB; s [——
* (p+1) = 0xB; X N
P 0x40 | 18 1 00 | 00 | O0® 00 ; 00 ; 00 }; 00
p=p+ 2; 0x48 IR
*p = all] + 1; -

YA/ UNIVERSITY of WASHINGTON L03: Memory & Data Il CSE351, Autumn 2019

Question: The variable values after Line 3 executes are
shown on the right. What are they after Line 4 & 57?

= \/ote at http://PollEv.com/justinh

1 void main () { Data Address

2 int a[] = {5,10}; (decimal) (decimal)

3 int* _ .. al0] J 100
S | al1l 10

4 p = p t+ 1;

5 *p = *p + 1; S 100

o }

p *p al0] a[l] p *p al[0] a[1l]

(A) 101 10 9 10 then 101 11 D 11
(B) 104 10 9 10 then 104 11 D 11

(C)
(D) 100 6 6 10 then 104 6 6 10

23

YA/ UNIVERSITY of WASHINGTON

LO3: Memory & Data Il

Representing strings

CSE351, Autumn 2019

+» C-style string stored as an array of bytes (char¥*)

" Elements are one-byte ASCI| codes for each character

"= No “String” keyword, unlike Java

32
33
34

35
36

37
38
39
40
41
42
43
44
45
46
47

space
I

#

$
%

/

48
49
50

51
52

53
54
55
56
57
58
59
60
61
62
63

O oo NOODUV BAAWNRDO

- V 1] N e oo

64
65
66

67
68

69
70
71
72
73
74
75
76
77
78
79

OZ2ZZrX—«=—IOmMMmMOO®>N

80
81
82

83
84

85
86
87
88
89
90
91
92
93
94
95

S>— -~ N< XS <CHWDIIO D

96
97
98

99
100

101
102
103
104
105
106
107
108
109
110
111

5 3 — X &= = 0@ -~0OD Q0 T Q

o

112
113
114

115
116

117
118
119
120
121
122
123
124
125
126
127

Zh.-'—-»-.N~<><E<!:H-mﬂ.Q'5

del

ASCIl: American Standard Code for Information Interchange

24

YA/ UNIVERSITY of WASHINGTON L03: Memory & Data Il CSE351, Autumn 2019

Null-Terminated Strings

+» Example: "Donald Trump" stored as a 13-byte array

Decimal: | 68 | 111|110| 97 | 108| 100| 32| 84 (114 117(109|112| O
Hex: | 0x44| Ox6F| Ox6E| Ox61| Ox6C| 0x64| 0x20]| Ox54| 0x72| Ox75|0x6D| 0x70| 0x00
Text: D o n a I d T r u m p \O

+ Last character followed by a O byte (' \0 ")
(a.k.a. "null terminator")

" Must take into account when allocating space in memory
= Notethat '0' # '\O"' (i.e. character O has non-zero value)

+» How do we compute the length of a string?

" Traverse array until null terminator encountered

25

YA/ UNIVERSITY of WASHINGTON L03: Memory & Data Il CSE351, Autumn 2019

. . C (char =1 byte)
Endianness and Strings

char s[6] = "12345"; 1A32, x86-64 SPARC
(little-endian) (big-endian)
String literal
Ox00] 31 [1 31 [Ox00 '1'
/mm 32 ¢ 7 32 [ox01 '2°
0x31 = 49 decimal = ASCII ‘1’ 0x02] 33 " 33 |0x02 '3°
Ox03| 34 ["1 34 [Ox03 '4'
0x04| 35 [! 35 |0x04 'S5
Ox05| 00 | » 00 |0x05 "\O'

+» Byte ordering (endianness) is not an issue for 1-byte
values

"= The whole array does not constitute a single value
" |ndividual elements are values; chars are single bytes

26

YA/ UNIVERSITY of WASHINGTON L03: Memory & Data Il CSE351, Autumn 2019

Examining Data Representations

+» Code to print byte representation of data
= Any data type can be treated as a byte array by casting it to char
" Chasunchecked casts !/ DANGER !!

void show bytes (char* start, int len) {
int 1i;
for (1 = 0; 1 < len; i++)
printf ("%p\t0x%.2x\n", start+i, *(start+i));
printf ("\n") ;
}

printf directives:
% Print pointer
\t Tab
%$x Print value as hex
\n New line

27

YA/ UNIVERSITY of WASHINGTON L03: Memory & Data Il CSE351, Autumn 2019

Examining Data Representations

+» Code to print byte representation of data
= Any data type can be treated as a byte array by casting it to char
" Chasunchecked casts !/ DANGER !!

void show bytes (char* start, int len) {
int 1i;
for (1 = 0; 1 < len; i++)
printf ("%p\t0x%.2x\n", start+i, *(start+i));
printf ("\n") ;
}

void show int (int x) {
show bytes((char *) &x, sizeof (int));

}

28

YA/ UNIVERSITY of WASHINGTON L03: Memory & Data Il CSE351, Autumn 2019

show bytes Execution Example

int x = 12345; // 0x00003039

printf ("int x = %d;\n", x);

show int (x); // show bytes((char *) &x, sizeof (int));

% Result (Linux x86-64):

" Note: The addresses will change on each run (try it!), but
fall in same general range

int x = 12345;
Ox7fffb7f71dbc
Ox7fffb7f71dbd

Ox7fffb7f71dbe
Ox7fffb7£71dbt

29

YA/ UNIVERSITY of WASHINGTON L03: Memory & Data Il CSE351, Autumn 2019

Summary

*

+» Assignment in C results in value being put in memory
location

>

Pointer is a C representation of a data address
= & =“address of” operator

= * = “value at address” or “dereference” operator

» Pointer arithmetic scales by size of target type
= Convenient when accessing array-like structures in memory

= Be careful when using — particularly when casting variables

+ Arrays are adjacent locations in memory storing the
same type of data object

= Strings are null-terminated arrays of characters (ASCII)

30

