f) In our 32-bit single-precision floating point representation, we decide to convert one significand bit
to an exponent bit. How many denormalized numbers do we have relative to before? (Circle one)

More Fewer

Rounded to the nearest power of 2, how many denorm numbers are there in our new format?
(Answer in IEC format)

Questions (e)-(g) concern the IEEE floating point standard.
e) What £loat is encoded by the following bits: 0xc14c00007?

(show all work here)

f) What is the smallest positive normalized number? Number: encoded as 0x

(show all work here)

x86-64
g) Write the MAL-MIPS function IsNotInfinity to return non-0 if the input is NOT £, 0 if it is £0.

IsNotInfinity: movl %edi, %eax

$1, %eax # make +/- Inf look the same

ret

justi
Text Box
 IsNotInfinity: movl %edi, %eax

 _____ $1, %eax # make +/- Inf look the same

 _____ _____________________________

 ret

justi
Cross-Out

justi
Typewritten Text
x86-64

M3) What is that Funky Smell? Oh, it’s just Potpourri... (10 pts, 20 mins)

a) How many non-negative floats are <2 ? (you must show your work above for credit)

Question 4: Let Me Float This Idea By You (9 Points, 16 Minutes)

For a very simple household appliance like a thermostat, a more minimalistic microprocessor is desired
to reduce power consumption and hardware costs. We have selected a 16-bit microprocessor that does
not have a floating-point unit, so there is no native support for floating point operations (no
float/double). However, we’d still like to represent decimals for our temperature reading so we're
going to implement floating point operations in software (in C).

a) Define a new variable type called fp:

We have decided to use a representation with a 5-bit exponent field while following all of the
representation conventions from the MIPS 32-bit floating point numbers except denorms.

Fill in the following functions. Not all blanks need to be used. You can call these functions and assume
proper behavior regardless of your implementation. Assume our hardware implements the C operator
“>>" as shift right arithmetic.

b)

/* returns -num */
fp negateFP(fp num) {

return

c)

/* returns the signed value of the exponent */
int getExp(fp num) {

return

d)

/* multiplies floating point num by 2”n, while detecting over/underflow */
/* remember, there are no denorms */
fp multPow2(fp num,int n) {

if() exit(1l); #overflow
if) exit(-1); #underflow
return ;

SID:

Question 5: Floating Point (10 pts)

Assume integers and IEEE 754 single precision floating point are 32 bits wide.

a)

Convert from IEEE 754 to decimal: 0xC0900000

What is the smallest positive integer that is a power of 2 that can be represented in IEEE 754 but not as a
signed int? You may leave your answer as a power of 2.

What is the smallest positive integer x such that x + 0.25 can'’t be represented? You may leave your
answer as a power of 2.

We have the following word of data: 0xFFC00000. Circle the number representation below that results in
the most negative number.

Unsigned Integer Two’s Complement Floating Point
If we decide to stray away from IEEE 754 format by making our Exponent field 10 bits wide and our

Mantissa field 21 bits wide. This gives us (circle one):
MORE PRECISION // LESS PRECISION

SID:

Question 1: Number Representation (8 pts)

a) Convert Ox1A into base 6. Don'’t forget to indicate what base your answer is in!

b) In IEEE 754 floating point, how many numbers can we represent in the interval [10,16)? You may leave
your answer in powers of 2.

c) If we use 7 Exponent bits, a denorm exponent of -62, and 24 Mantissa bits in floating point, what is the
largest positive power of 2 that we can multiply with 1 to get underflow?

	Pages from midterm_su12.pdf
	Pages from 2013Sp CS61C Midterm.pdf
	Pages from 2013SpCS61CFinalExam.pdf
	Pages from midterm_su12.pdf
	Pages from CS61C-Su16-MT2.pdf
	Pages from CS61C-Su16-Final.pdf

