to an exponent bit. How many denormalized numbers do we have relative to before? (Circle one)						
	More	Fewer				
Rounded to the nearest power of 2, how many denorm numbers are there in our new format?						
(Answer in IEC format)						

In our 32-bit single-precision floating point representation, we decide to convert one significand bit

Qu	estions (e)-(g) concern the IEEE floating point standard.
e)	What float is encoded by the following bits: 0xc14c0000? (show all work here)
f)	What is the smallest positive normalized number? Number: encoded as $0x$ (show all work here)
g)	Write the MAL MIPS function IsNotInfinity to return non-0 if the input is NOT $\pm \infty$, 0 if it $is \pm \infty$. IsNotInfinity: movl %edi, %eax
	\$1, %eax # make +/- Inf look the same

ret

M3) What is that Funky Smell? Oh, it's just Potpourri... (10 pts, 20 mins)

a) How many non-negative floats are < 2? _____ (you must show your work above for credit)

Question 4: Let Me Float This Idea By You (9 Points, 16 Minutes)

For a very simple household appliance like a thermostat, a more minimalistic microprocessor is desired to reduce power consumption and hardware costs. We have selected a **16-bit** microprocessor that does not have a floating-point unit, so there is no native support for floating point operations (no float/double). However, we'd still like to represent decimals for our temperature reading so we're going to implement floating point operations in software (in C).

a) Define a new variable type called fp:

We have decided to use a representation with a **5-bit exponent field** while following all of the representation conventions from the MIPS 32-bit floating point numbers **except denorms**.

Fill in the following functions. Not all blanks need to be used. You can call these functions and assume proper behavior regardless of your implementation. Assume our hardware implements the C operator ">>" as shift right arithmetic.

```
b)

/* returns -num */
fp negateFP(fp num) {
    return ____;
}
```

```
c)

/* returns the signed value of the exponent */
int getExp(fp num) {

    return
    ;
}
```

d)

			SID:				
Q	Question 5: Floating Point (10 pts)						
As	sume integers and IEEE 754 single	precision floating point are 32 bits	wide.				
a)	Convert from IEEE 754 to decimal:	0xC0900000					
b)	What is the smallest <i>positive</i> intege signed int? You may leave your an		epresented in IEEE 754 but not as a				
c)	What is the <i>smallest positive</i> integeranswer as a power of 2.	er \mathbf{x} such that $\mathbf{x} + 0.25$ can't be r	represented? You may leave your				
d)	We have the following word of data the most negative number.	: 0xFFC00000 . Circle the number	representation below that results in				
	Unsigned Integer	Two's Complement	Floating Point				
e)	If we decide to stray away from IEE Mantissa field 21 bits wide. This gi		nent field 10 bits wide and our				

MORE PRECISION // LESS PRECISION

		SID:
Q	uestion 1: Number Representation (8 pts)	
a)	Convert 0x1A into base 6. Don't forget to indicate what base your answer is in	n!
b)	In IEEE 754 floating point, how many numbers can we represent in the interval your answer in powers of 2.	l [10,16)? You may leave
c)	If we use 7 Exponent bits, a denorm exponent of -62, and 24 Mantissa bits in flargest positive power of 2 that we can multiply with 1 to get <i>underflow</i> ?	loating point, what is the