
SID: __________

7

Question F5: Caching [10 pts]

We have 16 KiB of RAM and two options for our cache. Both are two-way set associative with 256 B

blocks, LRU replacement, and write-back policies. Cache A is size 1 KiB and Cache B is size 2 KiB.

(A) Calculate the TIO address breakdown for Cache B: [1.5 pt]

Tag bits Index bits Offset bits

(B) The code snippet below accesses an integer array. Calculate the Miss Rate for Cache A if it

starts cold. [3 pt]

#define LEAP 4

#define ARRAY_SIZE 512

int nums[ARRAY_SIZE]; // &nums = 0x0100 (physical addr)

for (i = 0; i < ARRAY_SIZE; i+=LEAP)

 nums[i] = i*i;

(C) For each of the proposed (independent) changes, write MM for “higher miss rate”, NC for “no

change”, or MH for “higher hit rate” to indicate the effect on Cache A for the code above:[3.5 pt]

Direct-mapped _____ Increase block size _____

Double LEAP _____ Write-through policy _____

(D) Assume it takes 200 ns to get a block of data from main memory. Assume Cache A has a hit

time of 4 ns and a miss rate of 4% while Cache B, being larger, has a hit time of 6 ns. What is

the worst miss rate Cache B can have in order to perform as well as Cache A? [2 pt]

8

Question F7: Processes [9 pts]

(A) The following function prints out four numbers. In the following blanks, list three possible

outcomes: [3 pt]

(1) _________________

(2) _________________

(3) _________________

(B) For the following examples of exception causes, write “N” for intentional or “U” for unintentional

from the perspective of the user process. [2 pt]

System call ______ Hardware failure ______

Segmentation fault ______ Mouse clicked ______

(C) Briefly define a zombie process. Name a process that can reap a zombie process. [2 pt]

Zombie process:

Reaping process:

(D) In the following blanks, write “Y” for yes or “N” for no if the following need to be updated when

execv is run on a process. [2 pt]

Page table ______ PTBR ______ Stack ______ Code ______

void concurrent(void) {
int x = 3, status;
if (fork()) {

if (fork() == 0) {

 x += 2;
 printf("%d",x);
 } else {

 wait(&status);
 wait(&status);
 x -= 2;
 }
 }
 printf("%d",x);
 exit(0);
}

2

Question M1: Number Representation [8 pts]

(A) Take the 32-bit numeral 0xC0800000. Circle the number representation below that has the

most negative value for this numeral. [2 pt]

Floating Point Sign & Magnitude Two’s Complement Unsigned

(B) Let float f hold the value 2
20

. What is the largest power of 2 that gets rounded off when

added to f? Answer in exponential form, not just the exponent. [2 pt]

Traffic lights display three basic colors: red (R), yellow (Y), and green (G), so we can use them to

encode base 3! We decide to use the encoding 0↔R, 1↔Y, 2↔G. For example, 5 = 1�3
1
+2�3

0
 would

be encoded as YG. Assume each traffic light can only display one color at a time.

(C) What is the unsigned decimal value of the traffic lights displaying RGYY? [2 pt]

(D) If we have 9 bits of binary data that we want to store, how many traffic lights would it take to

store that same data? [2 pt]

 Question M2: Design Question [2 pts]

(A) The machine code for x86-64 instructions are variable length. Name one advantage and one

disadvantage of this design decision. [2 pt]

Advantage:

Disadvantage:

4 of 9

3. Virtual Memory (9 points)

Assume we have a virtual memory detailed as follows:

· 256 MiB Physical Address Space
· 4 GiB Virtual Address Space
· 1 KiB page size
· A TLB with 4 sets that is 8-way associative with LRU replacement

For the following questions it is fine to leave your answers as powers of 2.

a) How many bits will be used for:

Page offset? ___________

Virtual Page Number (VPN)? _________ Physical Page Number (PPN)? _________

TLB index? __________________ TLB tag? __________________

b) How many entries in this page table?

c) We run the following code with an empty TLB. Calculate the TLB miss rate for data (ignore
instruction fetches). Assume i and sum are stored in registers and cool is page-aligned.

#define LEAP 8
int cool[512];
... // Some code that assigns values into the array cool
... // Now flush the TLB. Start counting TLB miss rate from here.
int sum;
for (int i = 0; i < 512; i += LEAP) {
 sum += cool[i];
}

TLB Miss Rate: (fine to leave you answer as a fraction) ______________

UW NetID: _ _ _ _ _ _ _

5

Question 4: Procedures & The Stack [24 pts.]
Consider the following x86-64 assembly and C code for the recursive function rfun.

// Recursive function rfun

long rfun(char *s) {

 if (*s) {

 long temp = (long)*s;

 s++;

 return temp + rfun(s);

 }

 return 0;

}

// Main Function - program entry

int main(int argc, char **argv) {

 char *s = "CSE351";

 long r = rfun(s);

 printf("r: %ld\n", r);

}

00000000004005e6 <rfun>:

 4005e6: 0f b6 07 movzbl (%rdi),%eax

 4005e9: 84 c0 test %al,%al

 4005eb: 74 13 je 400600 <rfun+0x1a>

 4005ed: 53 push %rbx

 4005ee: 48 0f be d8 movsbq %al,%rbx

 4005f2: 48 83 c7 01 add $0x1,%rdi

 4005f6: e8 eb ff ff ff callq 4005e6 <rfun>

 4005fb: 48 01 d8 add %rbx,%rax

 4005fe: eb 06 jmp 400606 <rfun+0x20>

 400600: b8 00 00 00 00 mov $0x0,%eax

 400605: c3 retq

 400606: 5b pop %rbx

 400607: c3 retq

UW NetID: _ _ _ _ _ _ _

6

(A) How much space (in bytes) does this function take up in our final executable? [2 pts.]

(B) The compiler automatically creates labels it needs in assembly code. How many labels are used in
rfun (including the procedure itself)? [2 pts.]

(C) In terms of the C function, what value is being saved on the stack? [2 pts.]

(D) What is the return address to rfun that gets stored on the stack during the recursive calls (in hex)?

[2 pts.]

(E) Assume main calls rfun with char *s = “CSE351” and then prints the result using the printf

function, as shown in the C code above. Assume printf does not call any other procedure. Starting

with (and including) main, how many total stack frames are created, and what is the maximum depth

of the stack? [2 pts.]

Total Frames: Max Depth:

UW NetID: _ _ _ _ _ _ _

7

(F) Assume main calls rfun with char *s = “CSE351”, as shown in the C code. After main calls

rfun, we find that the return address to main is stored on the stack at address 0x7fffffffdb38. On

the first call to rfun, the register %rdi holds the address 0x4006d0, which is the address of the input

string “CSE351” (i.e. char *s == 0x4006d0). Assume we stop execution prior to executing the

movsbq instruction (address 0x4005ee) during the fourth call to rfun. [14 pts.]

For each address in the stack diagram below, fill in both the value and a description of the entry.

The value field should be a hex value, an expression involving the C code listed above (e.g., a
variable name such as s or r, or an expression involving one of these), a literal value (integer

constant, a string, a character, etc.), “unknown” if the value cannot be determined, or “unused” if
the location is unused.

The description field should be one of the following: “Return address”, “Saved %reg” (where reg is
the name of a register), a short and descriptive comment, “unused” if the location is unused, or
“unknown” if the value is unknown.

Memory Address Value Description

0x7fffffffdb48 unknown %rsp when main is entered

0x7fffffffdb38 0x400616 Return address to main

0x7fffffffdb30 unknown original %rbx

0x7fffffffdb28

0x7fffffffdb20

0x7fffffffdb18

0x7fffffffdb10

0x7fffffffdb08

0x7fffffffdb00

11/20/2017

1

CSE351, Winter 2018L21: Virtual Memory II

Summary of Address Translation Symbols

❖ Basic Parameters
▪ N = 2𝑛 Number of addresses in virtual address space
▪ M = 2𝑚 Number of addresses in physical address space
▪ P = 2𝑝 Page size (bytes)

❖ Components of the virtual address (VA)
▪ VPO Virtual page offset
▪ VPN Virtual page number
▪ TLBI TLB index
▪ TLBT TLB tag

❖ Components of the physical address (PA)
▪ PPO Physical page offset (same as VPO)
▪ PPN Physical page number

18

CSE351, Winter 2018L21: Virtual Memory II

Simple Memory System Example (small)

❖ Addressing

▪ 14-bit virtual addresses

▪ 12-bit physical address

▪ Page size = 64 bytes

19

13 12 11 10 9 8 7 6 5 4 3 2 1 0

VPOVPN

Virtual Page Number Virtual Page Offset

11 10 9 8 7 6 5 4 3 2 1 0

PPOPPN

Physical Page Number Physical Page Offset

11/20/2017

2

CSE351, Winter 2018L21: Virtual Memory II

Simple Memory System: Page Table

❖ Only showing first 16 entries (out of _____)

▪ Note: showing 2 hex digits for PPN even though only 6 bits

▪ Note: other management bits not shown, but part of PTE

20

VPN PPN Valid

0 28 1

1 – 0

2 33 1

3 02 1

4 – 0

5 16 1

6 – 0

7 – 0

VPN PPN Valid

8 13 1

9 17 1

A 09 1

B – 0

C – 0

D 2D 1

E – 0

F 0D 1

CSE351, Winter 2018L21: Virtual Memory II

Simple Memory System: TLB

❖ 16 entries total

❖ 4-way set associative

21

13 12 11 10 9 8 7 6 5 4 3 2 1 0

virtual page offsetvirtual page number

TLB indexTLB tag

0–021340A10D030–073

0–030–060–080–022

0–0A0–040–0212D031

102070–0010D090–030

ValidPPNTagValidPPNTagValidPPNTagValidPPNTagSet

Why does the
TLB ignore the
page offset?

11/20/2017

3

CSE351, Winter 2018L21: Virtual Memory II

Simple Memory System: Cache

❖ Direct-mapped with K = 4 B, C/K = 16

❖ Physically addressed

22

11 10 9 8 7 6 5 4 3 2 1 0

physical page offsetphysical page number

cache offsetcache indexcache tag

Note: It is just
coincidence that the

PPN is the same width
as the cache Tag

Index Tag Valid B0 B1 B2 B3

0 19 1 99 11 23 11

1 15 0 – – – –

2 1B 1 00 02 04 08

3 36 0 – – – –

4 32 1 43 6D 8F 09

5 0D 1 36 72 F0 1D

6 31 0 – – – –

7 16 1 11 C2 DF 03

Index Tag Valid B0 B1 B2 B3

8 24 1 3A 00 51 89

9 2D 0 – – – –

A 2D 1 93 15 DA 3B

B 0B 0 – – – –

C 12 0 – – – –

D 16 1 04 96 34 15

E 13 1 83 77 1B D3

F 14 0 – – – –

CSE351, Winter 2018L21: Virtual Memory II

Current State of Memory System

23

Cache:

TLB:
Page table (partial):

Index Tag V B0 B1 B2 B3

0 19 1 99 11 23 11

1 15 0 – – – –

2 1B 1 00 02 04 08

3 36 0 – – – –

4 32 1 43 6D 8F 09

5 0D 1 36 72 F0 1D

6 31 0 – – – –

7 16 1 11 C2 DF 03

Index Tag V B0 B1 B2 B3

8 24 1 3A 00 51 89

9 2D 0 – – – –

A 2D 1 93 15 DA 3B

B 0B 0 – – – –

C 12 0 – – – –

D 16 1 04 96 34 15

E 13 1 83 77 1B D3

F 14 0 – – – –

Set Tag PPN V Tag PPN V Tag PPN V Tag PPN V

0 03 – 0 09 0D 1 00 – 0 07 02 1

1 03 2D 1 02 – 0 04 – 0 0A – 0

2 02 – 0 08 – 0 06 – 0 03 – 0

3 07 – 0 03 0D 1 0A 34 1 02 – 0

VPN PPN V
0 28 1
1 – 0
2 33 1
3 02 1
4 – 0
5 16 1
6 – 0
7 – 0

VPN PPN V
8 13 1
9 17 1
A 09 1
B – 0
C – 0
D 2D 1
E – 0
F 0D 1

11/20/2017

4

CSE351, Winter 2018L21: Virtual Memory II

Memory Request Example #1

❖ Virtual Address: 0x03D4

❖ Physical Address:

24

TLBITLBT

0

13

0

12

0

11

0

10

1

9

1

8

1

7

1

6

0

5

1

4

0

3

1

2

0

1

0

0

VPOVPN

11 10 9 8 7 6 5 4 3 2 1 0

PPOPPN

COCICT

VPN ______ TLBT _____ TLBI _____ TLB Hit? ___ Page Fault? ___ PPN _____

CT ______ CI _____ CO _____ Cache Hit? ___ Data (byte) _______

Note: It is just
coincidence that the

PPN is the same width
as the cache Tag

CSE351, Winter 2018L21: Virtual Memory II

Memory Request Example #2

❖ Virtual Address: 0x038F

❖ Physical Address:

25

TLBITLBT

0

13

0

12

0

11

0

10

1

9

1

8

1

7

0

6

0

5

0

4

1

3

1

2

1

1

1

0

VPOVPN

11 10 9 8 7 6 5 4 3 2 1 0

PPOPPN

COCICT

VPN ______ TLBT _____ TLBI _____ TLB Hit? ___ Page Fault? ___ PPN _____

CT ______ CI _____ CO _____ Cache Hit? ___ Data (byte) _______

Note: It is just
coincidence that the

PPN is the same width
as the cache Tag

11/20/2017

5

CSE351, Winter 2018L21: Virtual Memory II

Memory Request Example #3

❖ Virtual Address: 0x0020

❖ Physical Address:

26

TLBITLBT

0

13

0

12

0

11

0

10

0

9

0

8

0

7

0

6

1

5

0

4

0

3

0

2

0

1

0

0

VPOVPN

11 10 9 8 7 6 5 4 3 2 1 0

PPOPPN

COCICT

VPN ______ TLBT _____ TLBI _____ TLB Hit? ___ Page Fault? ___ PPN _____

CT ______ CI _____ CO _____ Cache Hit? ___ Data (byte) _______

Note: It is just
coincidence that the

PPN is the same width
as the cache Tag

CSE351, Winter 2018L21: Virtual Memory II

Memory Request Example #4

❖ Virtual Address: 0x036B

❖ Physical Address:

27

TLBITLBT

0

13

0

12

0

11

0

10

1

9

1

8

0

7

1

6

1

5

0

4

1

3

0

2

1

1

1

0

VPOVPN

11 10 9 8 7 6 5 4 3 2 1 0

PPOPPN

COCICT

VPN ______ TLBT _____ TLBI _____ TLB Hit? ___ Page Fault? ___ PPN _____

CT ______ CI _____ CO _____ Cache Hit? ___ Data (byte) _______

Note: It is just
coincidence that the

PPN is the same width
as the cache Tag

