
1

CSE 351 Section 8 – Solutions to Additional Problems from Autumn 2017 Final

1: Caching

We have 64 KiB of RAM and a 2-KiB L1 data cache that is 4-way set associative with 32-byte blocks

and random replacement, write-back, and write allocate policies.

(A) Calculate the TIO address breakdown: [1.5 pt]

Tag bits Index bits Offset bits

7 4 5

16 address bits. log2 32 = 5 offset bits. 2-KiB cache = 64 blocks. 4 lines/set → 16 sets.

(B) How many management bits (bits other than the block data) are there in every line in the cache?

[1 pt]

Tag bits + Valid bit + Dirty bit (write-back) 9 bits

(C) The code snippet below accesses an array of doubles. Assume i is stored in a register.

Calculate the Miss Rate if the cache starts cold. [2.5 pt]

#define ARRAY_SIZE 256

double data[ARRAY_SIZE]; // &data = 0x1000 (physical addr)

for (i = 0; i < ARRAY_SIZE; i += 1)

data[i] /= 100;

Access pattern is read then write to data[i]. Stride = 1 double = 8 bytes. 32/8 = 4 strides per

block. The offset of &data is 0b00000, so we start at the beginning of a cache block. First access

(read) is a compulsory miss and the next 7 (over 4 different addresses) are hits. Since we never

revisit indices, this pattern continues for all cache blocks.

(D) For each of the proposed (independent) changes, write IN for “increased”, NC for “no change”, or

DE for “decreased” to indicate the effect on the Miss Rate for the code above: [4 pt]

Use float instead _DE_ Half the cache size _NC_

Split the loop body into:
data[i] /= 10;

data[i] /= 10;

_DE No-write allocate _NC_

Using floats means more strides/block. We never revisit blocks, so cache size doesn’t matter.

Since the entire array fits in the cache, running it through a 2nd loop results in all hits. No-write

allocate has no effect because all of our misses are on reads.

(E) Assume it takes 100 ns to get a block of data from main memory. If our L1 data cache has a hit

time of 2 ns and a miss rate of 3%, what is the average memory access time (AMAT)? [1 pt]

AMAT = HT + MR x MP = 2 + 0.03 x 100 = 5 5 ns

1/8 = 12.5%

2

2: Processes

(A) The following function prints out four numbers. In the following blanks, list three possible

outcomes: [3 pt]

(1) _3, 5, 5, 1

(2) _5, 3, 5, 1

(3) _5, 5, 3, 1

Simplified
Process
Diagram:

fork

x=3

fork

5 5

print print

wait

1

print

3

print

wait

(B) For the following examples of exception causes, write “N” for intentional or “U” for unintentional

from the perspective of the user process. [2 pt]

System call N

Segmentation fault U

Hardware failure U

Mouse clicked U

Syscalls are part of code you are executing. The others are external to the process.

(C) Briefly define a zombie process. Name a process that can reap a zombie process. [2 pt]

(D) In the following blanks, write “Y” for yes or “N” for no if the following need to be updated when

execv is run on a process. [2 pt]

Page table Y PTBR N Stack Y Code Y

The process already has its own page table, so while we will need to invalidate PTEs from the old

process image, we don’t need to create another page table, so the PTBR can remain the same.

We replace/update the old process image’s virtual address space, including Stack and Code.

Zombie process: A process that has ended/exited but is still consuming system resources.

void concurrent(void) {

int x = 3, status;

if (fork()) {

if (fork() == 0) {

x += 2;

printf("%d",x);

} else {

wait(&status);

wait(&status);

x -= 2;

}

}

printf("%d",x);

exit(0);

}

Reaping process: The parent process or init/systemd (PID 1).

	_DE

