
1

 CSE 351 Section 8 – Additional Problems from Autumn 2017 Final

 1. Caching

We have 64 KiB of RAM and a 2-KiB L1 data cache that is 4-way set associative with 32-byte blocks

and random replacement, write-back, and write allocate policies.

(A) Calculate the TIO address breakdown: [1.5 pt]

Tag bits Index bits Offset bits

(B) How many management bits (bits other than the block data) are there in every line in the cache?

[1 pt]

 bits

(C) The code snippet below accesses an array of doubles. Assume i is stored in a register.

Calculate the Miss Rate if the cache starts cold. [2.5 pt]

#define ARRAY_SIZE 256

double data[ARRAY_SIZE]; // &data = 0x1000 (physical addr)

for (i = 0; i < ARRAY_SIZE; i += 1)

data[i] /= 100;

(D) For each of the proposed (independent) changes, write IN for “increased”, NC for “no change”, or

DE for “decreased” to indicate the effect on the Miss Rate for the code above: [4 pt]

Use float instead

Split the loop body into:

data[i] /= 10;

data[i] /= 10;

Half the cache size

No-write allocate

(E) Assume it takes 100 ns to get a block of data from main memory. If our L1 data cache has a hit

time of 2 ns and a miss rate of 3%, what is the average memory access time (AMAT)? [1 pt]

 ns

2

2: Processes

(A) The following function prints out four numbers. In the following blanks, list three possible

outcomes: [3 pt]

(1)

(2)

(3)

(B) For the following examples of exception causes, write “N” for intentional or “U” for unintentional

from the perspective of the user process. [2 pt]

System call

Segmentation fault

Hardware failure

Mouse clicked

(C) Briefly define a zombie process. Name a process that can reap a zombie process. [2 pt]

(D) In the following blanks, write “Y” for yes or “N” for no if the following need to be updated when

execv is run on a process. [2 pt]

Page table PTBR Stack Code

Reaping process:

void concurrent(void) {

int x = 3, status;

if (fork()) {

if (fork() == 0) {

x += 2;

printf("%d",x);

} else {

wait(&status);

wait(&status);

x -= 2;

}

}

printf("%d",x);

exit(0);

}

Zombie process:

	(1)

