
CSE 351 Section 7 – Caches
Hi there! Welcome back to section, we’re happy that you’re here 

IEC Prefixing System

We often need to express large numbers and the preferred tool for doing so is the IEC Prefixing System!

Kibi- (Ki) 210 ≈ 103 Pebi- (Pi) 250 ≈ 1015
Mebi- (Mi) 220 ≈ 106 Exbi- (Ei) 260 ≈ 1018
Gibi- (Gi) 230 ≈ 109 Zebi- (Zi) 270 ≈ 1021
Tebi- (Ti) 240 ≈ 1012 Yobi- (Yi) 280 ≈ 1024

Prefix Exercises:

Write the following as powers of 2. The first one has been done for you:

2 Ki-bytes = 211 bytes 64 Gi-bits = 236 bits 16 Mi-integers = 224 integers

256 Pi-pencils = 258 pencils 512 Ki-books = 219 books 128 Ei-students = 267 students

Write the following using IEC Prefixes. The first one has been done for you:

215 cats = 32 Ki-cats 234 birds = 16 Gi-birds 243 huskies = 8 Ti-huskies

261 things = 2 Ei-things 227 caches = 128 Mi-caches 258 addresses = 256 Pi-addresses

Accessing a Cache (Hit or Miss?)

Assume the following caches all have block size 𝐾 = 4 and are in the current state shown (you can ignore "—").

All values are shown in hex. Tag fields are NOT padded, while bytes of the cache blocks are shown in full. The word
size for the machine with these caches is 12 bits (i.e. addresses are 12 bits long)

Direct-Mapped:

Set Valid Tag B0 B1 B2 B3 Set Valid Tag B0 B1 B2 B3
0 1 15 63 B4 C1 A4 8 0 — — — — — Offset bits: 2
1 0 — — — — — 9 1 0 01 12 23 34
2 0 — — — — — A 1 1 98 89 CB BC
3 1 D DE AF BA DE B 0 1E 4B 33 10 54 Index bits: 4
4 0 — — — — — C 0 — — — — —
5 0 — — — — — D 1 11 C0 04 39 AA
6 1 13 31 14 15 93 E 0 — — — — — Tag bits: 6
7 0 — — — — — F 1 F FF 6F 30 0

 Hit or Miss? Data returned

a) Read 1 byte at 0x7AC Miss —

b) Read 1 byte at 0x024 Hit 0x01

c) Read 1 byte at 0x99F Miss —

Sarah

Sarah

Sarah

Sarah

2-way Set Associative:

Set Valid Tag B0 B1 B2 B3 Set Valid Tag B0 B1 B2 B3
0 0 — — — — — 0 0 — — — — — Offset bits: 2
1 0 — — — — — 1 1 2F 01 20 40 03
2 1 3 4F D4 A1 3B 2 1 0E 99 09 87 56
3 0 — — — — — 3 0 — — — — — Index bits: 3
4 0 6 CA FE F0 0D 4 0 — — — — —

5 1 21 DE AD BE EF 5 0 — — — — —
6 0 — — — — — 6 1 37 22 B6 DB AA Tag bits: 7
7 1 11 00 12 51 55 7 0 — — — — —

 Hit or Miss? Data returned

a) Read 1 byte at 0x435 Hit 0xAD

b) Read 1 byte at 0x388 Miss —

c) Read 1 byte at 0x0D3 Miss —

Fully Associative:

Set Valid Tag B0 B1 B2 B3 Set Valid Tag B0 B1 B2 B3
0 1 1F4 00 01 02 03 0 0 — — — — — Offset bits: 2
0 0 — — — — — 0 1 AB 02 30 44 67
0 1 100 F4 4D EE 11 0 1 34 FD EC BA 23
0 1 77 12 23 34 45 0 0 — — — — — Index bits: 0
0 0 — — — — — 0 1 1C6 00 11 22 33
0 1 101 DA 14 EE 22 0 1 45 67 78 89 9A
0 0 — — — — — 0 1 1 70 00 44 A6 Tag bits: 10
0 1 16 90 32 AC 24 0 0 — — — — —

 Hit or Miss? Data returned

a) Read 1 byte at 0x1DD Hit 0x23

b) Read 1 byte at 0x719 Hit 0x11

c) Read 1 byte at 0x2AA Miss —

Code Analysis

Consider the following code that accesses a two-dimensional array (of size 64×64 ints).

Assume we are using a direct-mapped, 1 KiB cache with 16 B block size.

 for (int i = 0; i < 64; i++)
 for (int j = 0; j < 64; j++)
 array[i][j] = 0; // assume &array = 0x600000

a) What is the miss rate of the execution of the entire loop?
Every block can hold 4 ints (16B/4B per int), so we will need to pull a new block from memory every 4

accesses of the array. This means this miss rate is
ସ ௕௬௧௘௦ ௣௘௥ ௜௡௧

ଵ଺ ௕௬௧௘௦ ௣௘௥ ௕௟௢௖௞
=

ଵ ௕௟௢௖௞

ସ ௜௡௧௦
 = 0.25 = 25%

b) What code modifications can change the miss rate? Brainstorm before trying to analyze.
Possible answers: switch the loops (i.e. make j the outer loop and i the inner loop), switch j and i in the
array access, make the array a different type (e.g. char[][], long[][], etc.), make array an array of Linked
Lists or a 2-level array, etc.

(NOTE: Answer to part (c) on next page)

c) What cache parameter changes (size, associativity, block size) can change the miss rate?

Let’s consider each of the three parameters individually.

First, let’s consider modifying the size of the cache. Will it change the miss rate?
No, it doesn't matter how big the cache is in this case (if the block size doesn't change). We will still be
pulling the same amount of data each miss, and we will still have to go to memory every time we exhaust
that data

Next, let’s consider modifying the associativity of the cache. Will it change the miss rate?
No, this is helpful if we want to reduce conflict misses, but since the data we're accessing is all in contiguous
memory (thanks arrays!), booting old data to replace it with new data isn't an issue.

Finally, let’s consider modifying the block size of the cache. Will it change the miss rate?
Yes, bigger blocks mean we pull bigger chunks of contiguous elements in the array every time we have a
miss. Bigger chunks at a time means fewer misses down the line. Likewise, smaller blocks increase the
frequency with which we need to go to memory (think back to the calculations we did in part (a) to see
why this is the case)

So, in conclusion, changing block size can change the miss rate. Changing size or associativity will NOT
change the miss rate.

NOTE: Remember that the results we got were for this specific example. There are some code examples in
which changing the size or associativity of the cache will change the miss rate.

SID: __________

7

Question F5: Caching [10 pts]

We have 16 KiB of RAM and two options for our cache. Both are two-way set associative with 256 B

blocks, LRU replacement, and write-back policies. Cache A is size 1 KiB and Cache B is size 2 KiB.

(A) Calculate the TIO address breakdown for Cache B: [1.5 pt]

Tag bits Index bits Offset bits

4 2 8

14 address bits. logଶ 256 ൌ 8 offset bits. 2 KiB cache = 8 blocks. 2 blocks/set → 4 sets.

(B) The code snippet below accesses an integer array. Calculate the Miss Rate for Cache A if it

starts cold. [3 pt]

#define LEAP 4

#define ARRAY_SIZE 512

int nums[ARRAY_SIZE]; // &nums = 0x0100 (physical addr)

for (i = 0; i < ARRAY_SIZE; i+=LEAP)

 nums[i] = i*i;

1/16

Access pattern is a single write to nums[i]. Stride = LEAP = 4 ints = 16 bytes. 256/16 = 16

strides per block. First access is a compulsory miss and the next 15 are hits. Since we never

revisit indices, this pattern continues for all cache blocks. You can also verify that the offset of

&nums is 0x00, so we start at the beginning of a cache block.

(C) For each of the proposed (independent) changes, write MM for “higher miss rate”, NC for “no

change”, or MH for “higher hit rate” to indicate the effect on Cache A for the code above:[3.5 pt]

Direct-mapped _NC_ Increase block size _MH_

Double LEAP _MM_ Write-through policy _NC_

Since we never revisit blocks, associativity doesn’t matter. Larger block size means more

strides/block. Doubling LEAP means fewer strides/block. Write hit policy has no effect.

(D) Assume it takes 200 ns to get a block of data from main memory. Assume Cache A has a hit

time of 4 ns and a miss rate of 4% while Cache B, being larger, has a hit time of 6 ns. What is

the worst miss rate Cache B can have in order to perform as well as Cache A? [2 pt]

0.03 or 3%

AMATA = HTA + MRA ൈ MP = 4 + 0.04*200 = 12 ns.

AMATB = HTB + MRB ൈ MP ൑ 12 → 200 MRB ൑ 6 → MRB ൑ 0.03

