
CSE	351	Section	6	Solutions	–	Arrays	and	Structs	
Welcome	back	to	section,	we’re	happy	that	you’re	here	J	

	
We	have	a	two-dimensional	matrix	of	integer	data	of	size	𝑀	rows	and	𝑁	columns.		We	are	considering	3	different	
representation	schemes:	

1) 2-dimensional	array	int array2D[][],	 	 	 //	M*N	array	of	ints		
2) 2-level	array	int* array2L[],	and			 	 	 //	M	array	of	int	arrays	
3) array	of	linked	lists	struct node* arrayLL[].	 	 //	M	array	of	linked	lists	(struct	node)	

Consider	the	case	where	𝑀 = 3	and	𝑁 = 4.		The	declarations	are	given	below:	
2-dimensional array: 2-level array: Array of linked lists: 
int array2D[3][4]; int r0[4], r1[4], r2[4]; 

int* array2L[] = {r0,r1,r2}; 
struct node { 
 int col, num; 
 struct node* next; 
}; 
struct node* arrayLL[3]; 
// code to build out LLs 

For	example,	the	diagrams	below	correspond	to	the	matrix	
0 0
−4 0
0 0

1 0
5 0
0 0

	for	array2L	and	arrayLL:	

	
	
a) Fill	in	the	following	comparison	chart:	
	 2-dim	array	 2-level	array	 Array	of	LLs:	
Overall	Memory	Used	 M*N*sizeof(int)	=	48	B	 M*N*sizeof(int)	+	

M*sizeof(int	*)	=	72	B	
M*sizeof(struct	node	*)	+	
M*N*sizeof(struct	node)	
=	216	B	

Largest	guaranteed	
continuous	chunk	of	
memory	

The	whole	array	(48	B)	 The	array	of	pointers		
(24	B)	>	row	array	(16	B)	

The	array	of	pointers	(24	
B)	>	struct	(16	B)	

Smallest	guaranteed	
continuous	chunk	of	
memory	

The	whole	array	(48	B)	 Each	row	array	(16	B)	 Each	struct	node	(16	B)	

Data	type	returned	by:	 array2D[1] 
int * 

array2L[1] 
int * 

arrayLL[1] 
struct node * 

Number	of	memory	accesses	
to	get	int	in	the	BEST	case	

1	 2	 First	node	in	LL:		2	

Number	of	memory	accesses	
to	get	int	in	the	WORST	
case	

1	 2	 Last	node	in	LL:		5	
(we	have	to	read	next)	

	
b) Sam	Student	claims	that	since	our	arrays	are	relatively	small	(𝑁 < 256),	we	can	save	space	by	storing	the	col	

field	as	a	char	in	struct node.		Is	this	correct?		If	so,	how	much	space	do	we	save?		If	not,	is	this	an	example	
of	internal	or	external	fragmentation?	

No.		Alignment	requirement	of	𝐾 = 4	for		int num	leaves	3	bytes	of	internal	fragmentation	between	col	and	
num.	


