CSE 351 Section 6 Solutions - Arrays and Structs

Welcome back to section, we're happy that you're here ©

We have a two-dimensional matrix of integer data of size M rows and N columns. We are considering 3 different

representation schemes:

1) 2-dimensional array int array2D[] [],
2) 2-levelarray int* array2L[],and

3) array of linked lists struct node* arrayLL[].

// M*N array of ints
// M array of int arrays

Consider the case where M = 3 and N = 4. The declarations are given below:

// M array of linked lists (struct node)

2-dimensional array:

2-level array:

Array of linked lists:

int array2D[3][4]1;

int r0[4],
int* array2L[]

r1l[4], r2(4];

{r0,rl,r2};

}s

struct node {
int col,
struct node* next;

num;

struct node* arrayLL[3];
// code to build out LLs

For example, the diagrams below correspond to the matrix [—4

array2L[1]

array2L[0]| ——>r0 mmnm arrayLL[0]
L > 1 mnﬂn armayLL[1]
arrayLL[2]

sraiz| | [0]0[0] 0]

a) Fill in the following comparison chart:

0

0

0 1 0
0 5 Of|forarray2LandarrayLL:
0 0O

next

col
[0]o]] [ile[7] [2Ixl7] [3[o]e]
num

VN P ¥ £
[ol-a["] [+]o]"] [2]5]"] [3]0]2]

e \ Vs Ve \
Lofo[7] [1]o][] [2]o] | [3]o]o]

@ = null pointer

2-dim array

2-level array

Array of LLs:

Overall Memory Used M*N*sizeof(int) = 48 B M*N*sizeof(int) + M*sizeof(struct node *) +
M*sizeof(int *) =72 B M*N*sizeof(struct node)
=216B
Largest guaranteed The whole array (48 B) The array of pointers The array of pointers (24
continuous chunk of (24 B) > row array (16 B) | B) > struct (16 B)
memory

Smallest guaranteed
continuous chunk of
memory

The whole array (48 B)

Each row array (16 B)

Each struct node (16 B)

Data type returned by: arrayzD[1] arrayzL[1] arrayLL[1]

int * int * struct node *
Number of memory accesses | 1 2 First node in LL: 2
to get int in the BEST case
Number of memory accesses | 1 2 Last node in LL: 5

to get int in the WORST
case

(we have to read next)

b) Sam Student claims that since our arrays are relatively small (N < 256), we can save space by storing the col
field as a char in struct node. Is this correct? If so, how much space do we save? If not, is this an example
of internal or external fragmentation?

No. Alignment requirement of K = 4 for int num leaves 3 bytes of internal fragmentation between col and

num.

