
CSE	351	Lab	3	–	Smoke	
$ gdb bufbomb

(gbd) list 136

(gdb) break 136
• Or	somewhere	around	the	call	to	Gets()

(gdb) run -u <UWnetID>
• Substitute	your	UW	Net	ID

(gdb) next
• Until	you	enter	input	
• Enter	a	bunch	of	the	same	character	(e.g.	‘f’s	=	0x66	in	ASCII	or	‘3’	=	0x33	in	ASCII)	
• Recommended	that	you	use	+/-	1	from	a	multiple	of	8	to	demonstrate	how	GDB	displays	bytes	

(gdb) x /5gx buf
• Examines	the	entire	buffer	(5	“giant	words”	–	8	bytes	each	in	GDB	–	in	hex	format);	find	your	input	

(gdb) print &buf

(gdb) print $rsp
• Notice	that	buf	is	at	the	top	of	the	stack	

(gdb) info frame
• Find	the	saved	return	address	(“saved	rip”)	and	where	it	is	located	

(gbd) x /10gx $rsp
• Prints	out	the	stack;	find	the	saved %rip
• Calculate	how	many	bytes	of	padding	are	necessary:			

7	blocks	*	16	hex	digits	per	block	=	112	hex	digits	of	padding	
(gbd) print smoke

• This	will	give	you	your	target	address	–	the	one	you	want	to	overwrite	the	return	address	with	

Exit	GDB	and	open smoke.txt	in	a	text	editor	to	add	padding	and	target	address	(little	endian!!!)
• Repeating	characters	

o vim: <len>i<sequence>C-[
§ e.g. 5,	6,	i,	3,	2,	<space>,	Ctrl-[will	insert	hex	digits	for	56	ASCII	‘2’	characters	

o emacs: C-x ([seq]C-u[len]C-x)	
• Will	work	with	or	without	spaces;	with	space	might	be	easier	for	students	to	understand	

$./sendstring < smoke.txt > smoke.bytes

Open	smoke.bytes	in	a	text	editor	to	show	what	it	looks	like	(this	will	not	be	entirely	readable)	
• Can	open	hex	mode	in	vim	(%!xxd)	or	emacs	(M-x hexl-mode)	

$ gdb bufbomb

(gdb) break 136
• Or	whichever	line	you	broke	on	before	

(gdb) run -u <UWNetID> < smoke.bytes

(gdb) next

(gbd) x /10gx $rsp
• Notice	the	return	address	has	changed	from	before	

Let	it	continue	running...	smokin’!	

Important:			Every	time	you	change	
<file>.txt,	you	will	need	to	use	
sendstring	to	recreate	
<file>.bytes.	

You	pass	in	<file>.bytes	to	
./bufbomb	but	you	submit	
<file>.txt
	

