
Practice Problem 3.25:

For C code having the general form

long loop_while2(long a, long b)
{
 long result = ____________;
 while (_______________) {
 result = _____________;
 b = ____________;
 }
 return result;
}

GCC, run with command-line option -O1, produces the following code:

a in %rdi, b in %rsi

1. loop_while2:
2. testq %rsi, %rsi
3. jle .L8
4. movq %rsi, %rax
5. .L7:
6. imulq %rdi, %rax
7. subq %rdi, %rsi
8. testq %rsi, %rsi
9. jg .L7
10. rep; ret
11. .L8:
12. movq %rsi, %rax
13. ret

We can see that the compiler used a guarded-do translation, using the jle instruction on line 3 to skip
over the loop code when the initial test fails. Fill in the missing parts of the C code. Note that the control
structure in assembly code does not exactly match what would be obtained by a direct translation of the
C code according to our translation rules. In particular, it has two different ret instructions (lines 10 and
13). However, you can fill out the missing portions of the C code in a way that it will have equivalent
behavior to the assembly code.

Practice Problem 3.35:

For a C function having the general structure

long rfun(unsigned long x) {
 if (_________________)
 return ____________;
 unsigned long nx = _____________;

long rv = rfun(nx);
return ________________;

}

GCC generates the following assembly code:

long rfun(unsigned long x)
x in %rdi

1. rfun:
2. pushq %rbx
3. movq %rdi, %rbx
4. movl $0, %eax
5. testq %rdi, %rdi
6. je .L2
7. shrq $2, %rdi
8. call rfun
9. addq %rbx, %rax
10. .L2:
11. popq %rbx
12. ret

A. What value does rfun store in the callee-saved register %rbx?
B. Fill in the missing expressions in the C code shown above.

