
3/8/2018

1

CSE351, Winter 2018L26: Metldown

Meltdown
CSE 351 Winter 2018

Instructor:

Mark Wyse

Teaching Assistants:

Kevin Bi

Parker DeWilde

Emily Furst

Sarah House

Waylon Huang

Vinny Palaniappan

*thanks to Eddie Yan for a subset/skeleton of the slides

CSE351, Winter 2018L26: Metldown

Computer Architecture – The Basics

❖ Address Translation

▪ Memory addresses in our program are virtual and require a translation

int myArray[42]; // software address: 0xdead00a8

// physical address: 0xffff00a8

2

3/8/2018

2

CSE351, Winter 2018L26: Metldown

Computer Architecture – The Basics

❖ Caching

▪ CPUs have caches that speed up memory access!

▪ Typically physically addressed (after address translation)

❖ Assume access below is valid and memory page is in DRAM

int x = myArray[42]; //goes to DRAM, slooooow...
int y = myArray[42]; //goes to Cache, 1 CPU cycle

❖ Cache/memory accesses can be timed by user programs!

3

CSE351, Winter 2018L26: Metldown

Computer Architecture – The Basics

❖ Out-of-Order Execution

▪ Modern CPUs can run Out-of-Order (OoO)

❖ These lines can run in parallel!

▪ Computation for d and e are independent

▪ These operations may be executed by CPU in any order

int d = a + b + fac(c);
int e = a + b + c;
return d + e;

4

3/8/2018

3

CSE351, Winter 2018L26: Metldown

Computer Architecture – The Basics

❖ Speculation

▪ Modern, high-performance processors can execute instructions (statements)
speculatively

❖ Consider this code:

assert(idx < len);
result = data[idx];

5

CSE351, Winter 2018L26: Metldown

Computer Architecture – The Basics

❖ Speculation

▪ Modern, high-performance processors can execute instructions (statements)
speculatively

❖ Consider this code:

▪ The second line can execute before the check completes!

assert(idx < len);
result = data[idx];

6

3/8/2018

4

CSE351, Winter 2018L26: Metldown

Computer Architecture – The Basics

❖ Speculation

▪ Modern, high-performance processors can execute instructions (statements)
speculatively

❖ CPU often does something more like:

result = data[idx];
if (idx >= len)
// assert should have fired!
// CPU rolls back state
do_assert();

7

CSE351, Winter 2018L26: Metldown

❖ Starting with a empty (cold) cache, an attacker can use timing
information to determine if a cache block was loaded by the victim

Flush + Reload

8

3/8/2018

5

CSE351, Winter 2018L26: Metldown

Meltdown - Assumptions

❖ All of physical memory is mapped to kernel addresses in user process

▪ Start address (VA in user process) of physical memory is known, Ak

▪ Physical memory is K bytes total, and mapped directly, [Ak … (Ak + K – 1)]

❖ An exception (illegal memory access) can be handled/suppressed

❖ Kernel Address Space Layout Randomization not used

▪ Similar to randomizing start address of stack, kernel data structure start address
can be randomized

9

CSE351, Winter 2018L26: Metldown

Meltdown – Data Structures/Variables

❖ Two important data structures/variables

char probe_array[256 * 4096]; // 256 * 4KB = 256 pages

char* kernelAddr = {Ak … (Ak + K – 1)};

10

3/8/2018

6

CSE351, Winter 2018L26: Metldown

Meltdown – Toy Example

1 raise_exception();

2 // the line below is never reached

3 access(probe_array[data * 4096]);

❖ Assume data is a value between 0 – 255, and value is unknown

❖ Assume a cold cache

11

CSE351, Winter 2018L26: Metldown

Meltdown – Toy Example

1 raise_exception();

2 // the line below is never reached

3 access(probe_array[data * 4096]);

❖ Assume the CPU executes the probe_array access Speculatively, loading the
element of the array into the cache.

❖ Even though the exception is raised and the architectural state is “rolled back”, the
CPU still caches the memory access!

12

3/8/2018

7

CSE351, Winter 2018L26: Metldown

Meltdown – Toy Example

❖ After the speculative memory access, access all the elements of the probe array,
looking for an unusually fast access (i.e., a cached access):

❖ The Page tells us what the value of data was!

13

CSE351, Winter 2018L26: Metldown

Meltdown – Toy Example

❖ So, what did we accomplish?

▪ data was an unknown value between 0 – 255

▪ Based on the value of data, we speculatively loaded a cache line from
probe_array[data*4096]

▪ After the exception is handled/suppressed, iterate values of data from 0 – 255,
and use timing code to determine if probe_array[data*4096] is a cache hit.

❖ If cache hit detected for a particular value of data, we learned the value
of data!

14

3/8/2018

8

CSE351, Winter 2018L26: Metldown

Meltdown – the Exploit

❖ Goal: attempt to read physical memory by exploiting speculative and
OoO execution, and the fact that all of physical memory is mapped to
kernel addresses (virtual addresses) in a user process

❖ Question: if user process accesses a kernel address, an illegal memory
access occurs, raising an exception. Does the CPU still speculatively
perform the illegal load? And can we determine the value loaded?

❖ Yes!

15

CSE351, Winter 2018L26: Metldown

Meltdown – the Exploit

1 // rcx = kernel address (kernelAddr)

2 // rbx = probe_array

3 retry:

4 movb (%rcx), %al // move a byte to %al (%rax)

5 shl 0xc, %rax // multiply by 4096 (<< 12)

6 jz retry // retry if byte was 0**

7 mov (%rbx,%rax), %rbx // access probe_array[%al*4096]

** 0 is a special case, ignore for now

* Assume cold cache

16

3/8/2018

9

CSE351, Winter 2018L26: Metldown

Meltdown – the Exploit

1 // rcx = kernel address (kernelAddr)

2 // rbx = probe_array

3 retry:

4 movb (%rcx), %al // WILL RAISE AN EXCEPTION!

5 shl 0xc, %rax

6 jz retry

7 mov (%rbx,%rax), %rbx

17

CSE351, Winter 2018L26: Metldown

Meltdown – the Exploit

1 // rcx = kernel address (kernelAddr)

2 // rbx = probe_array

3 retry:

4 movb (%rcx), %al // WILL RAISE AN EXCEPTION!

5 shl 0xc, %rax // But, lines 5-7 executed

6 jz retry // speculatively!

7 mov (%rbx,%rax), %rbx

18

3/8/2018

10

CSE351, Winter 2018L26: Metldown

Meltdown – the Exploit

1 // rcx = kernel address (kernelAddr)

2 // rbx = probe_array

3 retry:

4 movb (%rcx), %al // WILL RAISE AN EXCEPTION!

5 shl 0xc, %rax // But, lines 5-7 executed

6 jz retry // speculatively!

7 mov (%rbx,%rax), %rbx // Races with Exception!

19

CSE351, Winter 2018L26: Metldown

Meltdown – the Exploit

1 // rcx = kernel address (kernelAddr)

2 // rbx = probe_array

3 retry:

4 movb (%rcx), %al // move a byte to %al (%rax)

5 shl 0xc, %rax // multiply by 4096 (<< 12)

6 jz retry // retry if byte was 0

7 mov (%rbx,%rax), %rbx // access probe_array[%al*4096]

❖ So, what did we do? Attempt to load a byte from kernel memory (this is illegal for our
user process!). Then, use that loaded byte in a speculative access to the probe_array,
loading a cache line to our cold cache.

❖ How do we determine what the byte was?
20

3/8/2018

11

CSE351, Winter 2018L26: Metldown

Meltdown – the Exploit

❖ After the speculative memory access, access elements of the probe array, looking for
an unusually fast access:

❖ Access probe_array[data * 4096], timing the access for a cache hit. If hit
detected, the value of data is the byte read from the kernel address!!!

21

CSE351, Winter 2018L26: Metldown

Meltdown – Explained

❖ Race between raising exception for illegal kernel address access (from
user process) and the probe array access.

▪ Race is due to OoO and speculative execution in the CPU

❖ If the exception wins the race, the register %rax is zeroed to prevent
leaking information

❖ If the probe array access wins the race, a cache line is loaded from
memory. The line to load is determined by the value of the illegal load
(byte %al) and uses %rax before it is zeroed by the exception.

❖ We can find the cache line that hits in the probe array on a second
access, which tells us the value of the byte %al we loaded illegally!

22

3/8/2018

12

CSE351, Winter 2018L26: Metldown

Meltdown – the Exploit – what about 0?

1 // rcx = kernel address (kernelAddr)

2 // rbx = probe_array

3 retry:

4 movb (%rcx), %al // move a byte to %al (%rax)

5 shl 0xc, %rax // multiply by 4096 (<< 12)

6 jz retry // retry if byte was 0**

7 mov (%rbx,%rax), %rbx // access probe_array[%al*4096]

** %rax will be 0 if the Exception wins the race with the probe_array access. Thus, if a
zero is seen, try again. Either, a non-zero byte is used to perform the speculative access,
or don’t perform the speculative access at all! Then, when scanning probe_array, no hits
will occur, and we can be reasonably confident the byte was 0.

23

CSE351, Winter 2018L26: Metldown

Meltdown - Summary

❖ Allows a user process to read all of physical memory on the system,
which is mapped in kernel addresses and by extension in user process
address space

❖ Speculative execution occurs in the exploit (leak arises from CPU
speculating in the attacker’s code)

24

3/8/2018

13

CSE351, Winter 2018L26: Metldown

Meltdown - Mitigation

❖ Meltdown relies on the kernel address space being mapped into user
process address space, and all of physical memory being mapped to
kernel address space.

❖ KAISER (patch by Gruss et al.) implements a stronger isolation between
kernel and user space. It leaves physical memory unmapped in kernel
address space.

❖ Or, use an AMD processor, which doesn’t bypass memory protection
during speculative execution.

25

