YW UNIVERSITY of WASHINGTON L26: Javaand C CSE351, Winter 2018

Java and C
CSE 351 Winter 2018

Instructor:
Mark Wyse

Teaching Assistants:
Kevin Bi, Parker DeWilde, Emily Furst,
Sarah House, Waylon Huang, Vinny Palaniappan

SERIOUSLY? THIS T BET THEY ACTUALLY HIRED SOMEONE | | WELL, YOU KNOW WHAT THEY SAY—
THING RUNS JAIA? | | TO SPEND Six MONTHS FORTING THIS | | WHEN ALL YOU HAVE IS A PAIR OF

ITS SINGLE-PURRDSE | | JWM S0 THEY/COULD WRITE THEIR 20 BOLT CUTTERS AND A BOTTLE OF VODKA,
HARDWARE! UNES OF CODE INA FAMILIAR SETTING. | | EVERYTHING LOOKS UKE THE LOCK ON

o k} THE%ER D WOLF BLITZERS BOATHOUSE.
Gﬂ /i

TMGLAD
YoU HAD A
[} NICE NIGHT

https://xkcd.com/801/

https://xkcd.com/801/

YW UNIVERSITY of WASHINGTON CSE351, Winter 2018

Administrivia

+ Lab 5 due Saturday (3/10)
+» Course evaluations open, due Sunday 3/12

+ Final Exam: Wed, 3/14, 2:30-4:20pm in KNE 110
" Bring your UW ID!
= Review Session: Mon, 3/12, 4:30-6:30 pm in SIG 134

YA UNIVERSITY of WASHINGTON L26: Javaand C CSE351, Winter 2018

C: Java: Memory & data
car *c = malloc(sizeof (car)); Car ¢ = new Car{():; Integers & floats
c->miles = 100; c.setMiles (100) ; x86 assembly
c->gals = 17; c.setGals (17); Procedures & stacks
float mpg = get mpg(c); float mpg = Executables
free(c); c.getMPG () ; Arrays & structs
— = Memory & caches
Assembly c_wfet_mpc_illz1] Processes
. pushqg srbp .
language: movq srsp, $rbp Virtual memory
- Memory allocation
popgq srbp Javavs. C
ret I
\ 4
Machine 0111010000011000
de: 100011010000010000000010
code: 1000100111000010
110000011111101000011111

Computer
system:

YW UNIVERSITY of WASHINGTON L26: Javaand C CSE351, Winter 2018

Java vs. C

+ Reconnecting to Java (hello CSE143!)

" But now you know a lot more about what really happens
when we execute programs

+» We’ve learned about the following items in C; now
we’ll see what they look like for Java:
" Representation of data
= Pointers / references
= Casting
" Function / method calls including dynamic dispatch

YW UNIVERSITY of WASHINGTON

L26: Java and C

CSE351, Winter 2018

Worlds Colliding

« CSE351 has given you a “really different feeling”
about what computers do and how programs execute

+» We have occasionally contrasted to Java, but CSE143
may still feel like “a different world”

" |t’s not —it’s just a higher-level of abstraction

= Connect these levels via how-one-could-implement-Java in
351 terms

YW UNIVERSITY of WASHINGTON L26: Javaand C

CSE351, Winter 2018

Meta-point to this lecture

+» None of the data representations we are going to talk
about are guaranteed by Java

+ In fact, the language simply provides an abstraction
(Java language specification)

= Tells us how code should behave for different language

constructs, but we can't easily tell how things are really
represented

= Butitisimportant to understand an implementation of the
lower levels — useful in thinking about your program

YW UNIVERSITY of WASHINGTON L26: Javaand C

CSE351, Winter 2018

Data in Java

+ Integers, floats, doubles, pointers —same as C

= “Pointers” are called “references” in Java, but are much
more constrained than C’s general pointers

= Java’s portability-guarantee fixes the sizes of all types
- Example: int is 4 bytes in Java regardless of machine

= No unsigned types to avoid conversion pitfalls

- Added some useful methods in Java 8 (also use bigger signed types)
« null is typically represented as O but “you can’t tell”
%~ Much more interesting:
" Arrays
= Characters and strings
= Objects

YW UNIVERSITY of WASHINGTON L26: Javaand C CSE351, Winter 2018

Data in Java: Arrays

Every element initialized to 0 or null

Length specified in immutable field at start of array (int — 4
bytes)

" array.length returns value of this field

» Since it has this info, what can it do?

C: int array[5];

Fard IEard Irard Irard Ieats

0 4 20

Java: int[] array = new int[5];

5100]00100100J00
0 4 20 24

YW UNIVERSITY of WASHINGTON L26: Javaand C CSE351, Winter 2018

Data in Java: Arrays

+ Every element initialized to O or null

+~ Length specified in immutable field at start of array (int — 4
bytes)
" array.length returns value of this field

Every access triggers a bounds-check

" Codeis added to ensure the index is within bounds

= Exception if out-of-bounds

C: int array[5]; To speed up bounds-checking:
* Length field is likely in cache
* Compiler may store length field

Fard IEard Irard Irard Ieats

o 20 in register for loops
Java: int[] array = new int[5]; * Compiler may prove that some
5 {oolooloolooloo checks are redundant

0 4 20 24

YW UNIVERSITY of WASHINGTON L26: Javaand C

Data in Java: Characters & Strings

» Two-byte Unicode instead of ASCII

= Represents most of the world’s alphabets

= String not bounded by a ‘\O’ (null character)
= Bounded by hidden length field at beginning of string

» All String objects read-only (vs. StringBuffer)

Example: the string “CSE351”

CSE351, Winter 2018

C: 13[5345]33[35[31]\0
(ASCII)
1 4 7
.la\(a: 6 43100l53(00l45]00]33]00|35[00]31]00
(Unicode) A 3

16

10

YW UNIVERSITY of WASHINGTON L26: Javaand C CSE351, Winter 2018

Data in Java: Objects

+ Data structures (objects) are always stored by reference, never

stored “inline”
"= |nclude complex data types (arrays, other objects, etc.) using references

C. Java:

struct rec { class Rec {
int 1i; int 1i;
int a[3]; int[] a = new int[3];
struct rec *p; Rec p;

}i

= a[] stored “inline” as part of }

= a stored by reference in object
4 . ifa ¢ p‘

ila o é 0 4 12 20
0 4 16 24 =

0 4 lo 11

struct

YW UNIVERSITY of WASHINGTON

L26: Javaand C

CSE351, Winter 2018

Pointer/reference fields and variables

+ InC, we have “=>" and “.” for field selection depending on
whether we have a pointer to a struct or a struct

" (*r) .aissocommon it becomes r->a

+ InJava, all non-primitive variables are references to objects
= We always use r. a notation

= But really follow reference to r with offset to a, just like r-=>ain C

® So no Java field needs more than 8 bytes

C:

struct rec *r =
struct rec r2;

r->1 = val;
r->al2] = val;
r->p = &r2;

malloc(...);

Java:

r = new Rec();
r2 = new Rec|();
r.1 = val;
r.al2] = val;
r.p = r2;

12

YW UNIVERSITY of WASHINGTON

Pointers/References

*

L26: Java and C

+ Pointers in C can point to any memory address

CSE351, Winter 2018

References in Java can only point to [the starts of] objects
= Can only be dereferenced to access a field or element of that object

C: Java:
struct rec { class Rec {
int i; int 1i;
int a[3]; int[] a = new int[3];
struct rec *p; Rec p;
¥ }
struct rec* r = malloc(..); Rec r = new Rec();
some fn(&(r->alll)); // ptr some fn(r.a, 1); // ref, index
r r / >
[s e ? D é
ila; D 0 4 [12 \.20
0O 4 16 24

L26: Javaand C CSE351, Winter 2018

YW UNIVERSITY of WASHINGTON

Casting in C (example from Lab 5)

+» Can cast any pointer into any other pointer
® Changes dereference and arithemetic behavior

struct BlockInfo {
size t sizeAndTags;

struct BlockInfo* next;

%* .
struct BlockInfo* prev; Cast b into char * to
do unscaled addition

i
typedef struct BlockInfo BlockInfo;

Cast back into
BlockInfo * to use
as BlockInfo struct

int x;
BlockInfo *b;
BlockInfo *newBlock;

newBlock = (BlockInfo *) ((char *) b + x);

0 8 1lo 24 X

14

YW UNIVERSITY of WASHINGTON L26: Javaand C CSE351, Winter 2018

Type-safe casting in Java

+ Can only cast compatible object references
] Based on CIaSS hlerarchy class Boat extends Vehicle {

int propellers;

}

class Object { class Vehicle {
> int passengers;

} }

class Car extends Vehicle {
int wheels;

}

Vehicle v = new Vehicle(); // super class of Boat and Car

Boat bl = new Boat|(); // |-=-> sibling
Car cl = new Car () ; // |-=-> sibling
Vehicle vl = new Car|();

Vehicle v2 = vl1;

Car c2 = new Boat();

Car c3 = new Vehicle () ;

Boat b2 = (Boat) v;

Car c4 = (Car) v2;
Car chb = (Car) Dbl;

15

YW UNIVERSITY of WASHINGTON L26: Javaand C CSE351, Winter 2018

Type-safe casting in Java

+ Can only cast compatible object references

] Based on CIaSS hlerarchy class Boat extends Vehicle {

int propellers;

}

class Object { class Vehicle {
> int passengers;

} }

class Car extends Vehicle {
int wheels;

}

Vehicle v = new Vehicle(); // super class of Boat and Car

Boat bl = new Boat|(); // |-=-> sibling

Car cl = new Car () ; // |-=-> sibling

Vehicle vl = new Car(); «—— / Everything needed for Vehicle alsoin Car

Vehicle v2 = v1; «—— / vlisdeclared as type Vehicle

Car c2 = new Boat(); +«—— X Compiler error: Incompatible type — elements in
Car that are not in Boat (siblings)

Car c3 = new Vehicle (); «—— X Compiler error: Wrong direction —elements Car
notin Vehicle (wheels)

Boat b2 = (Boat) v; +—— X Runtime error: Vehicle does not contain all
elements in Boat (propellers)

Car cd = (Car) v2; «—— v2 referstoa Car at runtime

Car c5 = (Car) Dbl; «— X Compiler error: Unconvertable types —b1 is

declared as type Boat 16

YW UNIVERSITY of WASHINGTON

L26: Javaand C

Java Object Definitions

CSE351, Winter 2018

class Point {

double x: }
<

fields

double v;
{ €

Point ()
O
O

X
Y

boolean samePlace (Point p)
return (x == p.x) &&

}

{

(y == p.Vy);

constructor

— method(s)

—

Point p new Point () ;<

creation

17

YW UNIVERSITY of WASHINGTON L26: Javaand C

CSE351, Winter 2018

Java Objects and Method Dispatch

Point object

P
header vtable’ptr X Y%
vtable for class Point: y o—
\ code for Point () code for samePlace ()
. Point object

header vtable‘ptr X Y

« Virtual method table (vtable)

= Like a jump table for instance (“virtual”) methods plus other class info
"= One table per class

« Object header : GC info, hashing info, lock info, etc.
= Why no size?

18

YW UNIVERSITY of WASHINGTON L26: Javaand C CSE351, Winter 2018

Java Constructors

<+ When we call new: allocate space for object (data fields and
references), initialize to zero/null, and run constructor method

Java: C pseudo-translation:
Point p = new Point(); Point* p = calloc(l,sizeof (Point)) ;
p->header = ...;

p->vtable = &Point vtable;
p->vtable[0] (p);

Point object

S

header vtable’ptr X Y

v

vtable for class Point: y o

\ code for Point () code for samePlace ()

19

YW UNIVERSITY of WASHINGTON

Java Methods

L26: Java and C

+ Static methods are just like functions

+ Instance methods:
= Can refer to this;

= Have an implicit first parameter for this; and

® Can be overridden in subclasses

+» The code to run when calling an instance method is chosen at

runtime by lookup in the vtable

Java:
p.samePlace (q) ;

Point object
P

C pseudo-translation:

p->vtable[l] (p, g);

header | vtable ’ptr X

v

vtable for class Point:

,.

\

code for Point ()

code for samePlace ()

CSE351, Winter 2018

20

YW UNIVERSITY of WASHINGTON L26: Javaand C CSE351, Winter 2018

Subclassing

class 3DPoint extends Point ({
double z;
boolean samePlace (Point p2) {
return false;
}
void sayHi () {
System.out.println ("hello");

}

+ Where does “z” go? At end of fields of Point
"= Point fields are always in the same place, so Point code can run on
3DPoint objects without modification
+ Where does pointer to code for two new methods go?
= No constructor, so use default Point constructor
= To override “samePlace”, use same vtable position
= Add new pointer at end of vtable for new method “sayHi”

21

YW UNIVERSITY of WASHINGTON L26: Javaand C CSE351, Winter 2018

Subclassing

class 3DPoint extends Point ({
double z;
boolean samePlace (Point p2) {
return false;
}
void sayHi () {
System.out.println ("hello");

z tacked on at end
3DPoint object ‘

header | vtable X Y zZ

sayHi tackfd on at end Code for
/ i sayHi
¢

vtable for 3DPoint: constructor @ samePlace ? sayHi

(not Point) \EV

Old code for New code for
constructor samePlace

22

YW UNIVERSITY of WASHINGTON L26: Javaand C CSE351, Winter 2018

Dynamic Dispatch

Point object

header |vtable ptr X Y%

Point vtable: ‘ h
pe=> 222 \\>
code for Point ()

3DPoint object ﬁ

code for Point’s samePlace ()

header | vtable X Y zZ

_——>»| code for sayHi ()

3DPoint vtable: .\ —
code for 3DPoint’s samePlace ()

Java: C pseudo-translation:

Point p = 2?2°?; // works regardless of what p is
return p.samePlace(q); return p->vtablel[l] (p, 9):

23

YW UNIVERSITY of WASHINGTON CSE351, Winter 2018

Ta-da!

+ In CSE143, it may have seemed “magic” that an
inherited method could call an overridden method

" You were tested on this endlessly

+» The “trick” in the implementation is this part:
p->vtable[1i] (p,q)

" |In the body of the pointed-to code, any calls to (other)
methods of this will use p->vtable

= Dispatch determined by p, not the class that defined a
method

24

YW UNIVERSITY of WASHINGTON

Practice Question

Assume: 64-bit pointers and that a Java object header is 8 B

+ What are the sizes of the things being pointed at by ptr c

andptr j?

L26: Javaand C

struct c {

int i;

char s[3];
int a(3];
struct c *p;

struct c* ptr c;

class jobj {

}

int i;
String s
int[] a
job] p;

jobj ptr j

CSE351, Winter 2018

new int[3];

new jobj () ;

YW UNIVERSITY of WASHINGTON L26: Javaand C CSE351, Winter 2018

Practice Question

+» Assume: 64-bit pointers and that a Java object header is 8 B

+ What are the sizes of the things being pointed at by ptr c (18)
and ptr j?(44B)

struct c | K class jobj { ne explict methods, byt
int i /\Lr- Siags s AN mker\}s COV\S'}NC}OK
’ 4 methoas ‘FM OL)eC" c\as;
char s[3]; 1 mJ(eMHr(ﬁ String s = “hi”;
int a[3]; H J int[] a = new int[3];
struct c *p; job]j p;
}; Kooz } ecternal g | | }
struct c* ptr c, jobj ptr j = new Jjobj();
- 5B OB
phec: [T TGO ol | U] Tat) 17////,f P | = idera / exdomal
0 “ 1 ¥ El T2 frog [Ang
null
. AC enAuf\ s\)\[M LN \eneﬁw\'b/\
P’tr_) : | heade l Viable P ‘ < °\°)°{h q\‘ﬁe&—b or ?B‘
O‘—'_gg 16 kea aﬂ\ammt) &‘I&V\GA‘I‘Q L\'B
ﬂaU] K(\[' /H‘H}
\2.

>l2.rjf1

0 q 6 8 26

YA UNIVERSITY of WASHINGTON L26: Javaand C CSE351, Winter 2018

We made it! & @ &

C: Java: Memory & data

car *c = malloc(sizeof (car)); Car ¢ = new Car(); Integers & floats
c->miles = 100; c.setMiles (100) ; x86 assembly
c->gals = 17; c.setGals (17); Procedures & stacks
float mpg = get mpg(c); float mpg = Executables
free (c); c.getMPG () ; Arrays & structs
~S & Memory & caches
Assembly get_mpg: Processes
h % rb .
language: SO T Virtual memory
movq srsp, Srbp)
- Memory allocation
PopPq srbp Javavs. C
ret i
\ 4
Machine 0111010000011000 \/
de: 100011010000010000000010 A \
COde: 1000100111000010)
110000011111101000011111 Windows 10 0sx Yosernte —otr
| [|
v v
Computer

system:

27

