
3/8/2018

1

CSE351, Winter 2018L26: Java and C

Java and C
CSE 351 Winter 2018

Instructor:

Mark Wyse

Teaching Assistants:

Kevin Bi, Parker DeWilde, Emily Furst,

Sarah House, Waylon Huang, Vinny Palaniappan

https://xkcd.com/801/

CSE351, Winter 2018L26: Java and C

Administrivia

❖ Lab 5 due Saturday (3/10)

❖ Course evaluations open, due Sunday 3/12

❖ Final Exam: Wed, 3/14, 2:30-4:20pm in KNE 110

▪ Bring your UW ID!

▪ Review Session: Mon, 3/12, 4:30-6:30 pm in SIG 134

2

CSE351, Winter 2018L26: Java and C

Roadmap

3

car *c = malloc(sizeof(car));

c->miles = 100;

c->gals = 17;

float mpg = get_mpg(c);

free(c);

Car c = new Car();

c.setMiles(100);

c.setGals(17);

float mpg =

c.getMPG();

get_mpg:

pushq %rbp

movq %rsp, %rbp

...

popq %rbp

ret

Java:C:

Assembly
language:

Machine
code:

0111010000011000

100011010000010000000010

1000100111000010

110000011111101000011111

Computer
system:

OS:

Memory & data
Integers & floats
x86 assembly
Procedures & stacks
Executables
Arrays & structs
Memory & caches
Processes
Virtual memory
Memory allocation
Java vs. C

CSE351, Winter 2018L26: Java and C

Java vs. C

❖ Reconnecting to Java (hello CSE143!)

▪ But now you know a lot more about what really happens
when we execute programs

❖ We’ve learned about the following items in C; now
we’ll see what they look like for Java:

▪ Representation of data

▪ Pointers / references

▪ Casting

▪ Function / method calls including dynamic dispatch

4

CSE351, Winter 2018L26: Java and C

Worlds Colliding

❖ CSE351 has given you a “really different feeling”
about what computers do and how programs execute

❖ We have occasionally contrasted to Java, but CSE143
may still feel like “a different world”

▪ It’s not – it’s just a higher-level of abstraction

▪ Connect these levels via how-one-could-implement-Java in
351 terms

5

CSE351, Winter 2018L26: Java and C

Meta-point to this lecture

❖ None of the data representations we are going to talk
about are guaranteed by Java

❖ In fact, the language simply provides an abstraction
(Java language specification)

▪ Tells us how code should behave for different language
constructs, but we can't easily tell how things are really
represented

▪ But it is important to understand an implementation of the
lower levels – useful in thinking about your program

6

https://xkcd.com/801/

3/8/2018

2

CSE351, Winter 2018L26: Java and C

Data in Java

❖ Integers, floats, doubles, pointers – same as C

▪ “Pointers” are called “references” in Java, but are much
more constrained than C’s general pointers

▪ Java’s portability-guarantee fixes the sizes of all types
• Example: int is 4 bytes in Java regardless of machine

▪ No unsigned types to avoid conversion pitfalls
• Added some useful methods in Java 8 (also use bigger signed types)

❖ null is typically represented as 0 but “you can’t tell”

❖ Much more interesting:

▪ Arrays

▪ Characters and strings

▪ Objects
7

CSE351, Winter 2018L26: Java and C

Data in Java: Arrays

❖ Every element initialized to 0 or null

❖ Length specified in immutable field at start of array (int – 4
bytes)
▪ array.length returns value of this field

❖ Since it has this info, what can it do?

8

int array[5];

Java:

C:

0 4 20

?? ?? ?? ?? ??

5 00 00 00 00 00

0 4 20 24

int[] array = new int[5];

CSE351, Winter 2018L26: Java and C

Data in Java: Arrays

❖ Every element initialized to 0 or null

❖ Length specified in immutable field at start of array (int – 4
bytes)
▪ array.length returns value of this field

❖ Every access triggers a bounds-check
▪ Code is added to ensure the index is within bounds

▪ Exception if out-of-bounds

9

int array[5];

Java:

C:

0 4 20

?? ?? ?? ?? ??

To speed up bounds-checking:
• Length field is likely in cache
• Compiler may store length field

in register for loops
• Compiler may prove that some

checks are redundant
5 00 00 00 00 00

0 4 20 24

int[] array = new int[5];

CSE351, Winter 2018L26: Java and C

Data in Java: Characters & Strings

❖ Two-byte Unicode instead of ASCII
▪ Represents most of the world’s alphabets

❖ String not bounded by a ‘\0’ (null character)
▪ Bounded by hidden length field at beginning of string

❖ All String objects read-only (vs. StringBuffer)

10

Example: the string “CSE351”

43 \0

0 1 4

53 45 33 35 31

7

C:
(ASCII)

Java:
(Unicode)

16

6 43 00 53 00 45 00 33 00 35 00 31 00

0 4 8

CSE351, Winter 2018L26: Java and C

Data in Java: Objects

❖ Data structures (objects) are always stored by reference, never
stored “inline”
▪ Include complex data types (arrays, other objects, etc.) using references

11

C:

▪ a[] stored “inline” as part of

struct

struct rec {

int i;

int a[3];

struct rec *p;

};

Java:

▪ a stored by reference in object

class Rec {

int i;

int[] a = new int[3];

Rec p;

...

}

i a p

0 4 16 24

i a p

0 4 2012

4 16

3

0

CSE351, Winter 2018L26: Java and C

Pointer/reference fields and variables

❖ In C, we have “->” and “.” for field selection depending on
whether we have a pointer to a struct or a struct
▪ (*r).a is so common it becomes r->a

❖ In Java, all non-primitive variables are references to objects
▪ We always use r.a notation

▪ But really follow reference to r with offset to a, just like r->a in C

▪ So no Java field needs more than 8 bytes

12

struct rec *r = malloc(...);

struct rec r2;

r->i = val;

r->a[2] = val;

r->p = &r2;

r = new Rec();

r2 = new Rec();

r.i = val;

r.a[2] = val;

r.p = r2;

C: Java:

3/8/2018

3

CSE351, Winter 2018L26: Java and C

Pointers/References

❖ Pointers in C can point to any memory address

❖ References in Java can only point to [the starts of] objects
▪ Can only be dereferenced to access a field or element of that object

13

struct rec {

int i;

int a[3];

struct rec *p;

};

struct rec* r = malloc(…);

some_fn(&(r->a[1])); // ptr

class Rec {

int i;

int[] a = new int[3];

Rec p;

}

Rec r = new Rec();

some_fn(r.a, 1); // ref, index

r r

i a p

0 4 16 24

i a p

0 4 2012

int[3]

4 16

3

0

Java:C:

CSE351, Winter 2018L26: Java and C

Casting in C (example from Lab 5)

❖ Can cast any pointer into any other pointer
▪ Changes dereference and arithemetic behavior

14

struct BlockInfo {

size_t sizeAndTags;

struct BlockInfo* next;

struct BlockInfo* prev;

};

typedef struct BlockInfo BlockInfo;

...

int x;

BlockInfo *b;

BlockInfo *newBlock;

...

newBlock = (BlockInfo *) ((char *) b + x);

...

Cast back into
BlockInfo * to use
as BlockInfo struct

Cast b into char * to

do unscaled addition

s n p

80 16 24

s n p

x

CSE351, Winter 2018L26: Java and C

Type-safe casting in Java
❖ Can only cast compatible object references

▪ Based on class hierarchy

15

Vehicle v = new Vehicle(); // super class of Boat and Car

Boat b1 = new Boat(); // |--> sibling

Car c1 = new Car(); // |--> sibling

Vehicle v1 = new Car();

Vehicle v2 = v1;

Car c2 = new Boat();

Car c3 = new Vehicle();

Boat b2 = (Boat) v;

Car c4 = (Car) v2;

Car c5 = (Car) b1;

class Vehicle {

int passengers;

}

class Boat extends Vehicle {

int propellers;

}

class Car extends Vehicle {

int wheels;

}

class Object {

...

}

CSE351, Winter 2018L26: Java and C

Vehicle v = new Vehicle(); // super class of Boat and Car

Boat b1 = new Boat(); // |--> sibling

Car c1 = new Car(); // |--> sibling

Vehicle v1 = new Car();

Vehicle v2 = v1;

Car c2 = new Boat();

Car c3 = new Vehicle();

Boat b2 = (Boat) v;

Car c4 = (Car) v2;

Car c5 = (Car) b1;

Type-safe casting in Java
❖ Can only cast compatible object references

▪ Based on class hierarchy

16

class Vehicle {

int passengers;

}

class Boat extends Vehicle {

int propellers;

}

class Car extends Vehicle {

int wheels;

}

class Object {

...

}

✓ Everything needed for Vehicle also in Car
✓ v1 is declared as type Vehicle

✗ Compiler error: Incompatible type – elements in
Car that are not in Boat (siblings)

✗ Compiler error: Wrong direction – elements Car
not in Vehicle (wheels)

✗ Runtime error: Vehicle does not contain all
elements in Boat (propellers)

✓ v2 refers to a Car at runtime
✗ Compiler error: Unconvertable types – b1 is

declared as type Boat

CSE351, Winter 2018L26: Java and C

Java Object Definitions

17

class Point {

double x;

double y;

Point() {

x = 0;

y = 0;

}

boolean samePlace(Point p) {

return (x == p.x) && (y == p.y);

}

}

...

Point p = new Point();

...

constructor

fields

method(s)

creation

CSE351, Winter 2018L26: Java and C

Java Objects and Method Dispatch

❖ Virtual method table (vtable)
▪ Like a jump table for instance (“virtual”) methods plus other class info

▪ One table per class

❖ Object header : GC info, hashing info, lock info, etc.
▪ Why no size?

18

code for Point() code for samePlace()

vtable for class Point:

q

xvtable ptr yheader

Point object

p
xvtable ptr yheader

Point object

3/8/2018

4

CSE351, Winter 2018L26: Java and C

Java Constructors

❖ When we call new: allocate space for object (data fields and
references), initialize to zero/null, and run constructor method

19

Point p = new Point(); Point* p = calloc(1,sizeof(Point));

p->header = ...;

p->vtable = &Point_vtable;

p->vtable[0](p);

Java:

code for Point() code for samePlace()

vtable for class Point:

p
xvtable ptr yheader

Point object

C pseudo-translation:

CSE351, Winter 2018L26: Java and C

Java Methods

❖ Static methods are just like functions

❖ Instance methods:
▪ Can refer to this;
▪ Have an implicit first parameter for this; and
▪ Can be overridden in subclasses

❖ The code to run when calling an instance method is chosen at
runtime by lookup in the vtable

20

p.samePlace(q); p->vtable[1](p, q);

Java: C pseudo-translation:

code for Point() code for samePlace()

vtable for class Point:

p

xvtable ptr yheader

Point object

CSE351, Winter 2018L26: Java and C

Subclassing

❖ Where does “z” go? At end of fields of Point
▪ Point fields are always in the same place, so Point code can run on
3DPoint objects without modification

❖ Where does pointer to code for two new methods go?
▪ No constructor, so use default Point constructor

▪ To override “samePlace”, use same vtable position

▪ Add new pointer at end of vtable for new method “sayHi”

21

class 3DPoint extends Point {

double z;

boolean samePlace(Point p2) {

return false;

}

void sayHi() {

System.out.println("hello");

}

}

CSE351, Winter 2018L26: Java and C

Subclassing

22

New code for
samePlace

Old code for
constructor

sayHi tacked on at end
Code for
sayHi

class 3DPoint extends Point {

double z;

boolean samePlace(Point p2) {

return false;

}

void sayHi() {

System.out.println("hello");

}

}

xvtable yheader

3DPoint object

z

constructor samePlacevtable for 3DPoint:
(not Point)

sayHi

z tacked on at end

CSE351, Winter 2018L26: Java and C

code for Point()

code for Point’s samePlace()
Point vtable:

xvtable ptr yheader

Point object

p ???

Dynamic Dispatch

23

Point p = ???;

return p.samePlace(q);

// works regardless of what p is

return p->vtable[1](p, q);

Java: C pseudo-translation:

code for 3DPoint’s samePlace()

code for sayHi()

xvtable yheader

3DPoint object

z

3DPoint vtable:

CSE351, Winter 2018L26: Java and C

Ta-da!

❖ In CSE143, it may have seemed “magic” that an
inherited method could call an overridden method

▪ You were tested on this endlessly

❖ The “trick” in the implementation is this part:
p->vtable[i](p,q)

▪ In the body of the pointed-to code, any calls to (other)
methods of this will use p->vtable

▪ Dispatch determined by p, not the class that defined a
method

24

3/8/2018

5

CSE351, Winter 2018L26: Java and C

Practice Question

❖ Assume: 64-bit pointers and that a Java object header is 8 B

❖ What are the sizes of the things being pointed at by ptr_c
and ptr_j?

25

struct c {

int i;

char s[3];

int a[3];

struct c *p;

};

struct c* ptr_c;

class jobj {

int i;

String s = “hi”;

int[] a = new int[3];

jobj p;

}

jobj ptr_j = new jobj();

CSE351, Winter 2018L26: Java and C

Practice Question

❖ Assume: 64-bit pointers and that a Java object header is 8 B

❖ What are the sizes of the things being pointed at by ptr_c
and ptr_j?

26

struct c {

int i;

char s[3];

int a[3];

struct c *p;

};

struct c* ptr_c;

class jobj {

int i;

String s = “hi”;

int[] a = new int[3];

jobj p;

}

jobj ptr_j = new jobj();

CSE351, Winter 2018L26: Java and C

We made it! ☺😎😂

27

car *c = malloc(sizeof(car));

c->miles = 100;

c->gals = 17;

float mpg = get_mpg(c);

free(c);

Car c = new Car();

c.setMiles(100);

c.setGals(17);

float mpg =

c.getMPG();

get_mpg:

pushq %rbp

movq %rsp, %rbp

...

popq %rbp

ret

Java:C:

Assembly
language:

Machine
code:

0111010000011000

100011010000010000000010

1000100111000010

110000011111101000011111

Computer
system:

OS:

Memory & data
Integers & floats
x86 assembly
Procedures & stacks
Executables
Arrays & structs
Memory & caches
Processes
Virtual memory
Memory allocation
Java vs. C

