L26: Java and C

Javaand C
CSE 351 Winter 2018

Instructor:
Mark Wyse

Teaching Assistants:
Kevin Bi, Parker DeWilde, Emily Furst,
Sarah House, Waylon Huang, Vinny Palaniappan

SERCUSLY? THIS | [T BET THEY ACTUALLY HIRED SONECNE | | WELL, YOU KNOW WHAT THEY SAY—
THING RUNS JAUA? | | T SPEND Six MONTHS FORTING THS | | WHEN ALLYOU HAVE IS A FRIR OF
TS SNGLE-PURAE | | Jutt S0 THEYCOULD WRITE THEIR 20 | | BOLT QUTTERS AD A BOTILE oF \eoxa,

! LINES OF C20E WA FRMILAR SETTNG. | | EVERYTHING LOOKS UIKE THE LOCK ON.

[\ B
it o

HAD A
NICE MIGHT

https://xked.com/801/

126: Java and C

Administrivia

« Lab 5 due Saturday (3/10)

= Course evaluations open, due Sunday 3/12

« Final Exam: Wed, 3/14, 2:30-4:20pm in KNE 110
= Bring your UW ID!
= Review Session: Mon, 3/12, 4:30-6:30 pm in SIG 134

3/8/2018

Roadmap

C:

car *c = malloc(sizeof (car)); “ Car c = new Car();

c->miles = 100; c.setMiles (100) ;
c->gals = 17; c.setGals(17);
float mpg = get mpg(c); float mpg =
free(c); c.getMPG () ;

Assembly get_mpg:
. pushq Srbp
language: movg %rsp, %rbp
PopPq $1bp Javavs. C
ret 1 0s:
A 4
Machine 0111010000011000 -- \/ 4
code: 100011010000010000000010 /'\ :
- 1000100111000010 -
110000011111101000011111 \ 10 osx e =
y
¥ v
Computer

system:

Javavs. C

= Reconnecting to Java (hello CSE143!)

= But now you know a lot more about what really happens
when we execute programs

= We've learned about the following items in C; now
we’ll see what they look like for Java:
= Representation of data
= Pointers / references
= Casting
= Function / method calls including dynamic dispatch

Worlds Colliding

« CSE351 has given you a “really different feeling”
about what computers do and how programs execute

We have occasionally contrasted to Java, but CSE143
may still feel like “a different world”
= |t's not —it’s just a higher-level of abstraction

= Connect these levels via how-one-could-implement-Java in
351 terms

Meta-point to this lecture

« None of the data representations we are going to talk
about are guaranteed by Java

= In fact, the language simply provides an abstraction
(Java language specification)
= Tells us how code should behave for different language
constructs, but we can't easily tell how things are really
represented

= Butitis important to understand an implementation of the
lower levels — useful in thinking about your program

https://xkcd.com/801/

Data in Java

« Integers, floats, doubles, pointers —same as C

= “Pointers” are called “references” in Java, but are much
more constrained than C’s general pointers

= Java’s portability-guarantee fixes the sizes of all types
- Example: int is 4 bytes in Java regardless of machine

= No unsigned types to avoid conversion pitfalls
« Added some useful methods in Java 8 (also use bigger signed types)
+ null is typically represented as 0 but “you can't tell”
« Much more interesting:
= Arrays
= Characters and strings
" Objects

Data in Java: Arrays

= Every element initializedto 0 or null

= Length specified in immutable field at start of array (int —4
bytes)
® array.length returns value of this field

= Since it has this info, what can it do?

C: int array[5];
0 4 20
Java: int[] array = new int[5];
5 [0oJoo]ooJoofoo]
0 4 20 24

3/8/2018

ASHINGTON

Data in Java: Arrays

Every element initialized to 0 or null

« Length specified in immutable field at start of array (int —4
bytes)
® array.length returns value of this field

« Every access triggers a bounds-check

= Code is added to ensure the index is within bounds

= Exception if out-of-bounds

C: int array[5]; To speed up bounds-checking:
* Length field is likely in cache

+ Compiler may store length field

0 4 20 in register for loops
Java: int[] array = new int[5]; « Compiler may prove that some
hecks are redundant
5 [oo]oofoofoo]o] ‘
0 4 20 24

NGTON

Data in Java: Characters & Strings

> Two-byte Unicode instead of ASCII

= Represents most of the world’s alphabets
= String not bounded by a ‘\0’ (null character)

= Bounded by hidden length field at beginning of string
+ All String objects read-only (vs. StringBuffer)

Example: the string “CSE351”
¢ EEEEEEL
0 1 4 7

Java: | 5
(Unicode)

[43]00]53]00]45]00]33]00]35]00]31]00]
4 8 16

Winter 2018

Data in Java: Objects

= Data structures (objects) are always stored by reference, never
stored “inline”

= Include complex data types (arrays, other objects, etc.) using references

C: Java:
struct rec { class Rec {
int i; int i;
int a[3]; int[] a = new int[3];

struct rec *p; Rec p;
i

= a[] stored “inline” as part of

}

struct = astored by reference in object

Pointer/reference fields and variables

= InC, we have “~>" and “.” for field selection depending on
whether we have a pointer to a struct or a struct
" (*r).aissocommon it becomes r->a

- In Java, all non-primitive variables are references to objects
= We always use r . a notation
= But really follow reference to r with offset to a, just like r=>a in C
= So no Java field needs more than 8 bytes

C: Java:

struct rec *r = malloc(...); r = new Rec();
struct rec r2; r2 = new Rec();
r->i = val; 2ol val;
r->a[2] = val; r.a[2] = val;
r->p = &r2; r.p r2;

Pointers/References

= Pointers in C can point to any memory address

« References in Java can only point to [the starts of] objects
= Can only be dereferenced to access a field or element of that object

o Java:
struct rec { class Rec {

int i; int i;

int a[3]; int[] a = new int[3];

struct rec *p; Rec p;
i }
struct rec* r = malloc(..); Rec r = new Rec();
someifn(&.(r—>a[l])); // ptr some_fn (r.a, 1); // ref, index
r

0 4 16 24

Casting in C (example from Lab 5)

= Can cast any pointer into any other pointer
= Changes dereference and arithemetic behavior

struct BlockInfo {
size_t sizeAndTags;
struct BlockInfo* next;
struct BlockInfo* prev;

Castb into char

Yi
typedef struct BlockInfo BlockInfo;
int x;

BlockInfo *b;
BlockInfo *newBlock;

Cast back into

newBlock = (BlockInfo *@) + x);

N
[s]n]e]
X

—
[s[n]e]
0 8 1624

do unscaled addition

*to

nfo * touse
asBlockInfo struct

3/8/2018

Type-safe casting in Java

= Can only cast compatible object references

class Boat extends Vehicle {

= Based on class hierarchy s o
int propellers;

class Object { class vehicle
int passengers;
})

}

class Car extends Vehi.

Vehicle Vehicle(); // super class of Boat and Car
Boat Boat () ; // |--> sibling
Car Car(); // 1-=> sibling

Vehicle vl = new Car();
Vehicle v2 = v1;
2

Car c2 = new Boat();
Car c3 = new Vehicle();
Boat b2 = (Boat) v;

Car c4 = (Car) v2;

Car c5 = (Car) bl;

Type-safe casting in Java

« Can only cast compatible object references

class Boat extends Vehicle {

= Based on class hierarchy : x
int propellers;

class Object { class Vehicle
int passengers;
} }

}

class Car extends Vehicle |
int wheels;

}

Vehicle new Vehicle(); // super class of Boat and Car
Boat new Boat () ; // |-=> sibling
car new Car(); // 1-=> sibling

Vehicle vl = new Car();
Vehicle v2 = vl;

«—— / Everything needed for Vehicle alsoin Car
«— vl isdeclared as type Vehicle

Car c2 = new Boat(); +— X Compiler error: Incompatible type — elements in
Car thatare not in Boat (siblings)
Car c3 = new Vehicle();

els)
Boat b2 = (Boat) v;

car c4 = (Car) v2;
Car c5 = (Car) bl; <«—— X Compiler error: Unconvertable types —b1 is

declared as type Boat

g direction — elements Car

e does not contain all

Java Object Definitions

class Point {

double x; field
double y; relds
Point () { constructor
x = 07
y = 0;

boolean samePlace (Point p) {
return (x == p.x) && (y == p.y); [method(s)

) g

}

Point p = new Point (); «—————— creation

Java Objects and Method Dispatch

Point object

header | vtable'ptr | X | Y

vtable for class Point:

code for Point () | ’lcode for samePlace() |

Point object

header | vtable ptr |x | vy

« Virtual method table (vtable)
= Like a jump table for instance (“virtual”) methods plus other class info
® One table per class

« Object header : GC info, hashing info, lock info, etc.
® Why no size?

3/8/2018

Java Constructors Java Methods

= When we call new: allocate space for object (data fields and

= Static methods are just like functions
references), initialize to zero/null, and run constructor method

= Instance methods:

Java: C pseudo-translation: " Can refer to this;
: P : = Have an implicit first parameter for this; and

Point p = new Point(); Point* p calloc(l,sizeof (Point)) ; = Can be overridden in subclasses
p—>header = ...; . .)
p->vtable = &Point vtable; = The code to run when calling an instance method is chosen at
p->vtable[0] (p); runtime by lookup in the vtable

) _ Java: C pseudo-translation:

o Point object ‘ p.samePlace (q) ; ‘ p->vtable[1l] (p,)/
\lheaderlvtable.ptr X |

Point object

3
\l header [vtable otr [x [v |

vtable for class Point:

vtable for class Point:

code for Point () | ylcode for samePlace () |

Subclassing Subclassing
class 3DPoint extends Point { class 3DPoint extends Point {
double z; double z;

boolean samePlace (Point p2) { boolean samePlace (Point p2) {
return false;

return false;
}

}
void sayHi() { void sayHi() (
System.out.println("hello"); System.out.println("hello") ;
} }
} }

z tacked on at end

« Where does “z” go? At end of fields of Point 3DPoint object)

= Point fields are always in the same place, so Point code can run on [neader [veanie E [v E |

3DPoint objects without modification sayHi tacked on at end Code for
+ Where does pointer to code for two new methods go? ! > sayii
. vtable for 3DPoint: | constructor 'l samePlace fl sayHi ‘

= No constructor, so use default Point constructor (not Point)

= To override “samePlace”, use same vtable position

= Add new pointer at end of vtable for new method “sayHi” 0ld code for New code for

21 constructor samePlace 2

Dynamic Dispatch Ta-da!l
|E°ir;t °b|je“ - | | | + In CSE143, it may have seemed “magic” that an
cader |vtable PLL A% Y inherited method could call an overridden method
" You were tested on this endlessly

Point vtable:
pe> 227

code for Point’s samePlace ()

3DPoint object

« The “trick” in the implementation is this part:

[header [vtabie o[« / [v p->vtable[i] (p,q)
= In the body of the pointed-to code, any calls to (other)
3DPoint vtable: | 4 | o~ | methods of this will use p->vtable
\l P — — = Dispatch determined by p, not the class that defined a
= method
Java: C pseudo-translation:

Point p = 227?; // works regardless of what p is

return p->vtable[l] (p, a);

return p.samePlace (q);

Practice Question

andptr j?

« Assume: 64-bit pointers and that a Java object header is 8 B
+ What are the sizes of the things being pointed at by ptr ¢

struct c {
int i;
char s[3];
int a(3];
struct c *p;
bi
struct c* ptr_c;

class jobj {
int i;
String s = “hi”;
int[] a = new int[3];
jobj p;
}
jobj ptr_j = new jobj();

Practice Question

andptr 3?(44B)

+ Assume: 64-bit pointers and that a Java object header is 8 B
> What are the sizes of the things being pointed at by ptr ¢ G18)

3/8/2018

struct c *p; ¢

struct c* ptr_c;

struct c { K
int i; o
char s[3]; i, 2 .vdemej
int a[3]; 4y

i Kooz 8 Jedernd g

class jobj {
int i;

jobj p;
}
jobj ptr_j = new

o el melhods, bt
Sl inherds Construdor §
medhoss
String s = “hi”;

int[] a = new int[3];

Frowm Object class

jobj () ;

3
pire: [GOMOEA 0 | & T 220 e | ‘.;b/uﬁmx
0 EX 20 a4 T2 ~5)

pres (B T [¢

o

G

—|

76 44
>[2 Vo L [
§ T

af

6

Wl

qc ¥

Bepending s VM imlenerdeliol
A ciges b or § B

here agtuming dipedts 48

We made it! & &
C:

S

Java:

Memory & data

car *c = malloc(sizeof (car));
c->miles = 100;
c->gals = 17;

Car c = new Car();
c.setMiles (100);
c.setGals (17) ;

x86 assembly

Integers & floats

Procedures & stacks

float mpg = get_mpg(c); float mpg = Executables
free(c); c.getMPG () ; Arrays & structs
S — Memory & caches
Assembly get_mpg: Processes
. pushq irbp .
language: o %rsp, 3rbp Virtual memory
Memory allocation
POPq #rbp Javavs. C
ret I
A 4
Machine 0111010000011000
100011010000010000000010
code: 1000100111000010
110000011111101000011111
¥
Computer
system:

