
CSE351, Winter 2018L25:  Memory Allocation III

Memory Allocation III
CSE 351 Winter 2018

Instructor:

Mark Wyse

Teaching Assistants:

Kevin Bi

Parker DeWilde

Emily Furst

Sarah House

Waylon Huang

Vinny Palaniappan

https://xkcd.com/835/

https://xkcd.com/835/


CSE351, Winter 2018L25:  Memory Allocation III

Administrivia

❖ Homework 5 due tonight

❖ Lab 5 due Saturday (3/10)

▪ Recommended that you watch the Lab 5 helper videos

❖ Final Exam:  Wed, March 14 @ 2:30pm in KNE 110

2



CSE351, Winter 2018L25:  Memory Allocation III

Coalescing in Explicit Free Lists

❖ Neighboring free blocks are already part of the free 
list

1) Remove old block from free list

2) Create new, larger coalesced block

3) Add new block to free list (insertion policy)

❖ How do we tell if a neighboring block if free?
3

Block being freed
Allocated

Allocated

Case 1

Allocated

Free

Case 2

Free

Allocated

Case 3

Free

Free

Case 4



CSE351, Winter 2018L25:  Memory Allocation III

Freeing with LIFO Policy (Case 1)

❖ Insert the freed block at the root of the list

4

Before

After

Root

Boundary tags not 
shown, but don’t 

forget about them!

free( )

Root



CSE351, Winter 2018L25:  Memory Allocation III

Freeing with LIFO Policy (Case 2)

❖ Splice successor block out of list, coalesce both memory blocks, 
and insert the new block at the root of the list

5

Boundary tags not 
shown, but don’t 

forget about them!

Before

Root

free( )

After

Root



CSE351, Winter 2018L25:  Memory Allocation III

Freeing with LIFO Policy (Case 3)

❖ Splice predecessor block out of list, coalesce both memory 
blocks, and insert the new block at the root of the list

6

Boundary tags not 
shown, but don’t 

forget about them!

Before

Root

free( )

After

Root



CSE351, Winter 2018L25:  Memory Allocation III

Freeing with LIFO Policy (Case 4)

❖ Splice predecessor and successor blocks out of list, coalesce all 
3 memory blocks, and insert the new block at the root of the 
list

7

Boundary tags not 
shown, but don’t 

forget about them!

Before

Root

free( )

After

Root



CSE351, Winter 2018L25:  Memory Allocation III

Explicit List Summary

❖ Comparison with implicit list:
▪ Block allocation is linear time in number of free blocks instead of all

blocks

• Much faster when most of the memory is full 

▪ Slightly more complicated allocate and free since we need to splice 
blocks in and out of the list

▪ Some extra space for the links (2 extra pointers needed for each free 
block)

• Increases minimum block size, leading to more internal fragmentation

❖ Most common use of explicit lists is in conjunction with 
segregated free lists
▪ Keep multiple linked lists of different size classes, or possibly for 

different types of objects

8



CSE351, Winter 2018L25:  Memory Allocation III

Keeping Track of Free Blocks

1) Implicit free list using length – links all blocks using math
▪ No actual pointers, and must check each block if allocated or free

2) Explicit free list among only the free blocks, using pointers

3) Segregated free list
▪ Different free lists for different size “classes”

4) Blocks sorted by size
▪ Can use a balanced binary tree (e.g. red-black tree) with pointers within 

each free block, and the length used as a key
9

20 16 824

20 16 824

= 4-byte box (free)

= 4-byte box (allocated)



CSE351, Winter 2018L25:  Memory Allocation III

Segregated List (SegList) Allocators

❖ Each size class of blocks has its own free list

❖ Organized as an array of free lists

❖ Often have separate classes for each small size

❖ For larger sizes: One class for each two-power size

10

16

24-32

40-inf

8

Size class
(in bytes)



CSE351, Winter 2018L25:  Memory Allocation III

Allocation Policy Tradeoffs

❖ Data structure of blocks on lists

▪ Implicit (free/allocated), explicit (free), segregated (many 
free lists) – others possible!

❖ Placement policy:  first-fit, next-fit, best-fit

▪ Throughput vs. amount of fragmentation

❖ When do we split free blocks?

▪ How much internal fragmentation are we willing to tolerate?

❖ When do we coalesce free blocks?
▪ Immediate coalescing: Every time free is called

▪ Deferred coalescing: Defer coalescing until needed
• e.g.  when scanning free list for malloc or when external 

fragmentation reaches some threshold
11



CSE351, Winter 2018L25:  Memory Allocation III

Memory Allocation

❖ Dynamic memory allocation

▪ Introduction and goals

▪ Allocation and deallocation (free)

▪ Fragmentation

❖ Explicit allocation implementation

▪ Implicit free lists

▪ Explicit free lists (Lab 5)

▪ Segregated free lists

❖ Implicit deallocation:  garbage collection

❖ Common memory-related bugs in C

13



CSE351, Winter 2018L25:  Memory Allocation III

Wouldn’t it be nice…

❖ If we never had to free memory?

❖ Do you free objects in Java?

▪ Reminder:  implicit allocator

14



CSE351, Winter 2018L25:  Memory Allocation III

Garbage Collection (GC)

❖ Garbage collection:  automatic reclamation of heap-allocated 
storage – application never explicitly frees memory

❖ Common in implementations of functional languages, scripting 
languages, and modern object oriented languages:
▪ Lisp, Racket, Erlang, ML, Haskell, Scala, Java, C#, Perl, Ruby, Python, Lua, 

JavaScript, Dart, Mathematica, MATLAB, many more…

❖ Variants (“conservative” garbage collectors) exist for C and C++
▪ However, cannot necessarily collect all garbage

15

void foo() {

int* p = (int*) malloc(128);

return;  /* p block is now garbage! */

}

(Automatic Memory Management)



CSE351, Winter 2018L25:  Memory Allocation III

Garbage Collection

❖ How does the memory allocator know when memory 
can be freed? 

▪ In general, we cannot know what is going to be used in the 
future since it depends on conditionals

▪ But, we can tell that certain blocks cannot be used if they 
are unreachable (via pointers in registers/stack/globals)

❖ Memory allocator needs to know what is a pointer 
and what is not – how can it do this?

▪ Sometimes with help from the compiler

16



CSE351, Winter 2018L25:  Memory Allocation III

Memory as a Graph

❖ We view memory as a directed graph
▪ Each allocated heap block is a node in the graph

▪ Each pointer is an edge in the graph

▪ Locations not in the heap that contain pointers into the heap are called 
root nodes (e.g. registers, stack locations, global variables)

17

A node (block) is reachable if there is a path from any root to that node
Non-reachable nodes are garbage (cannot be needed by the application)

Root nodes

Heap nodes

not reachable
(garbage)

reachable



CSE351, Winter 2018L25:  Memory Allocation III

Garbage Collection

❖ Dynamic memory allocator can free blocks if there are 
no pointers to them

❖ How can it know what is a pointer and what is not?

❖ We’ll make some assumptions about pointers:

▪ Memory allocator can distinguish pointers from non-
pointers

▪ All pointers point to the start of a block in the heap

▪ Application cannot hide pointers 
(e.g. by coercing them to an int, and then back again)

18



CSE351, Winter 2018L25:  Memory Allocation III

Classical GC Algorithms

❖ Mark-and-sweep collection (McCarthy, 1960)
▪ Does not move blocks (unless you also “compact”)

❖ Reference counting (Collins, 1960)
▪ Does not move blocks (not discussed)

❖ Copying collection (Minsky, 1963)
▪ Moves blocks (not discussed)

❖ Generational Collectors (Lieberman and Hewitt, 1983)

▪ Most allocations become garbage very soon, so

focus reclamation work on zones of memory recently allocated.

❖ For more information:
▪ Jones, Hosking, and Moss, The Garbage Collection Handbook: The Art of 

Automatic Memory Management, CRC Press, 2012.

▪ Jones and Lin, Garbage Collection: Algorithms for Automatic Dynamic 
Memory, John Wiley & Sons, 1996.

19



CSE351, Winter 2018L25:  Memory Allocation III

Mark and Sweep Collecting

❖ Can build on top of malloc/free package
▪ Allocate using malloc until you “run out of space”

❖ When out of space:
▪ Use extra mark bit in the header of each block

▪ Mark: Start at roots and set mark bit on each reachable block

▪ Sweep: Scan all blocks and free blocks that are not marked

20

Before mark

root

After mark Mark bit set

After sweep freefree

Arrows are NOT 
free list pointers



CSE351, Winter 2018L25:  Memory Allocation III

Memory-Related Perils and Pitfalls in C

25

Slide
Prog stop
Possible?

Security 
Flaw?

A) Bad order of operations

B) Bad pointer arithmetic

C) Dereferencing a non-pointer

D) Freed block – access again

E) Freed block – free again

F) Memory leak – failing to free memory

G) No bounds checking

H) Off-by-one error

I) Reading uninitialized memory

J) Referencing nonexistent variable

K) Wrong allocation size



CSE351, Winter 2018L25:  Memory Allocation III

Find That Bug!  (Slide 26)

❖ The classic scanf bug
▪ int scanf(const char *format)

26

int val;

...

scanf("%d", val);

Error Prog stop Security flaw Fix:
Type: Possible? Possible?



CSE351, Winter 2018L25:  Memory Allocation III

Find That Bug!  (Slide 27)

• A is NxN matrix, x is N-sized vector (so product is vector of size N)

• N defined elsewhere (#define)

27

/* return y = Ax */

int *matvec(int **A, int *x) { 

int *y = (int *)malloc( N*sizeof(int) );

int i, j;

for (i=0; i<N; i++)

for (j=0; j<N; j++)

y[i] += A[i][j] * x[j];

return y;

}

Error Prog stop Security flaw Fix:
Type: Possible? Possible?



CSE351, Winter 2018L25:  Memory Allocation III

Find That Bug!  (Slide 28)

• N and M defined elsewhere (#define)

28

int **p;

p = (int **)malloc( N * sizeof(int) );

for (int i=0; i<N; i++) {

p[i] = (int *)malloc( M * sizeof(int) );

}

Error Prog stop Security flaw Fix:
Type: Possible? Possible?



CSE351, Winter 2018L25:  Memory Allocation III

Find That Bug!  (Slide 29)

29

int **p;

p = (int **)malloc( N * sizeof(int*) );

for (int i=0; i<=N; i++) {

p[i] = (int *)malloc( M * sizeof(int) );

}

Error Prog stop Security flaw Fix:
Type: Possible? Possible?



CSE351, Winter 2018L25:  Memory Allocation III

Find That Bug!  (Slide 30)

30

char s[8];

int i;

gets(s);  /* reads “123456789” from stdin */ 

Error Prog stop Security flaw Fix:
Type: Possible? Possible?



CSE351, Winter 2018L25:  Memory Allocation III

Find That Bug!  (Slide 31)

31

int *search(int *p, int val) {

while (p && *p != val)

p += sizeof(int);

return p;

}

Error Prog stop Security flaw Fix:
Type: Possible? Possible?



CSE351, Winter 2018L25:  Memory Allocation III

Find That Bug!  (Slide 32)

❖ ‘ -- ’ happens first

32

int* getPacket(int** packets, int* size) {

int* packet;

packet = packets[0];

packets[0] = packets[*size - 1];

*size--; // what is happening here?

reorderPackets(packets, *size);

return packet;

}

Error Prog stop Security flaw Fix:
Type: Possible? Possible?



CSE351, Winter 2018L25:  Memory Allocation III

Find That Bug!  (Slide 33)

33

int* foo() {

int val;

return &val;

}  

Error Prog stop Security flaw Fix:
Type: Possible? Possible?



CSE351, Winter 2018L25:  Memory Allocation III

Find That Bug!  (Slide 34)

34

x = (int*)malloc( N * sizeof(int) );

<manipulate x>

free(x);

...

y = (int*)malloc( M * sizeof(int) );

<manipulate y>

free(x);

Error Prog stop Security flaw Fix:
Type: Possible? Possible?



CSE351, Winter 2018L25:  Memory Allocation III

Find That Bug!  (Slide 35)

35

x = (int*)malloc( N * sizeof(int) );

<manipulate x>

free(x);

...

y = (int*)malloc( M * sizeof(int) );

for (i=0; i<M; i++)

y[i] = x[i]++;

Error Prog stop Security flaw Fix:
Type: Possible? Possible?



CSE351, Winter 2018L25:  Memory Allocation III

Find That Bug!  (Slide 36)

36

typedef struct L {

int val;

struct L *next;

} list;

void foo() {

list *head = (list *) malloc( sizeof(list) );

head->val = 0;

head->next = NULL;

<create and manipulate the rest of the list>

...

free(head);

return;

}

Error Prog stop Security flaw Fix:
Type: Possible? Possible?



CSE351, Winter 2018L25:  Memory Allocation III

Dealing With Memory Bugs

❖ Conventional debugger (gdb)
▪ Good for finding bad pointer dereferences

▪ Hard to detect the other memory bugs

❖ Debugging malloc (UToronto CSRI malloc)
▪ Wrapper around conventional malloc

▪ Detects memory bugs at malloc and free boundaries
• Memory overwrites that corrupt heap structures

• Some instances of freeing blocks multiple times

• Memory leaks

▪ Cannot detect all memory bugs
• Overwrites into the middle of allocated blocks

• Freeing block twice that has been reallocated in the interim

• Referencing freed blocks

37



CSE351, Winter 2018L25:  Memory Allocation III

Dealing With Memory Bugs (cont.)

❖ Some malloc implementations contain checking 
code
▪ Linux glibc malloc:  setenv MALLOC_CHECK_ 2 

▪ FreeBSD:  setenv MALLOC_OPTIONS AJR 

❖ Binary translator:  valgrind (Linux), Purify

▪ Powerful debugging and analysis technique

▪ Rewrites text section of executable object file

▪ Can detect all errors as debugging malloc

▪ Can also check each individual reference at runtime

• Bad pointers

• Overwriting

• Referencing outside of allocated block
38



CSE351, Winter 2018L25:  Memory Allocation III

What about Java or ML or Python or …?

❖ In memory-safe languages, most of these bugs are 
impossible

▪ Cannot perform arbitrary pointer manipulation

▪ Cannot get around the type system

▪ Array bounds checking, null pointer checking

▪ Automatic memory management

❖ But one of the bugs we saw earlier is possible.  Which 
one?

39



CSE351, Winter 2018L25:  Memory Allocation III

Memory Leaks with GC

❖ Not because of forgotten free — we have GC!

❖ Unneeded “leftover” roots keep objects reachable

❖ Sometimes nullifying a variable is not needed for correctness 
but is for performance

❖ Example: Don’t leave big data structures you’re done with in a 
static field

40

Root nodes

Heap nodes

not reachable
(garbage)

reachable


