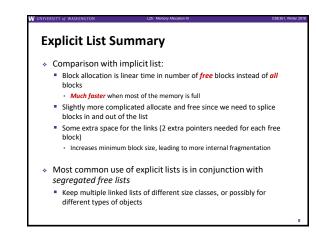
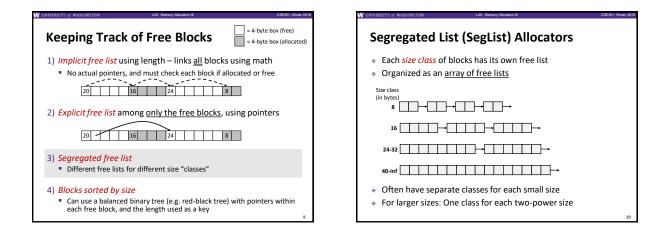

Administrivia

- Homework 5 due tonight
- Lab 5 due Saturday (3/10)
 - Recommended that you watch the Lab 5 helper videos
- * Final Exam: Wed, March 14 @ 2:30pm in KNE 110





Allocation Policy Tradeoffs

- Data structure of blocks on lists
- Implicit (free/allocated), explicit (free), segregated (many free lists) – others possible!
- Placement policy: first-fit, next-fit, best-fit
 Throughput vs. amount of fragmentation
- When do we split free blocks?
- How much internal fragmentation are we willing to tolerate?
- When do we coalesce free blocks?
 - Immediate coalescing: Every time free is called
 - Deferred coalescing: Defer coalescing until needed
 - e.g. when scanning free list for malloc or when external fragmentation reaches some threshold

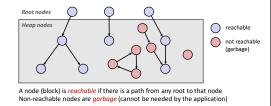
Memory Allocation

- Dynamic memory allocation
 - Introduction and goals
 - Allocation and deallocation (free)
 - Fragmentation
- Explicit allocation implementation
 - Implicit free lists
 - Explicit free lists (Lab 5)
 - Segregated free lists
- * Implicit deallocation: garbage collection
- Common memory-related bugs in C

Wouldn't it be nice...

- If we never had to free memory?
- Do you free objects in Java?
- Reminder: implicit allocator

Garbage Collection (GC) (Automatic Memory Management) * Garbage collection: automatic reclamation of heap-allocated storage - application never explicitly frees memory void foo() { int* p = (int*) malloc(128); return; /* p block is now garbage! */ } * Common in implementations of functional languages, scripting languages, and modern object oriented languages: • Lisp, Racket, Erlang, ML, Haskell, Scala, Java, C#, Perl, Ruby, Python, Lua, JavaScript, Dart, Mathematica, MATLAB, many more...

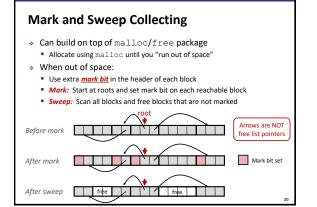

Variants ("conservative" garbage collectors) exist for C and C++
 However, cannot necessarily collect all garbage

Garbage Collection

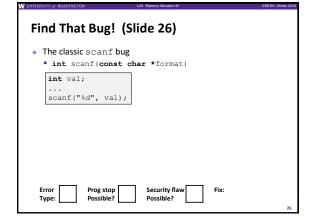
- How does the memory allocator know when memory can be freed?
 - In general, we cannot know what is going to be used in the future since it depends on conditionals
 - But, we can tell that certain blocks cannot be used if they are unreachable (via pointers in registers/stack/globals)
- Memory allocator needs to know what is a pointer and what is not – how can it do this?
 - Sometimes with help from the compiler

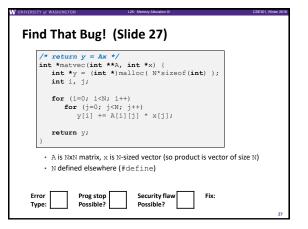
Memory as a Graph

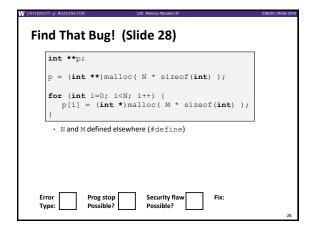
- We view memory as a directed graph
- Each allocated heap block is a node in the graph
 - Each pointer is an edge in the graph
 - Locations not in the heap that contain pointers into the heap are called root nodes (e.g. registers, stack locations, global variables)

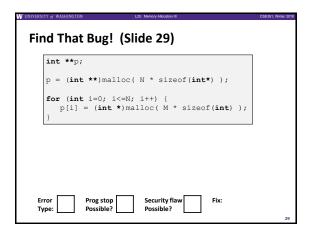


Garbage Collection

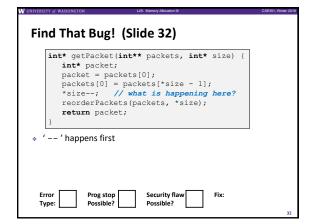

- Dynamic memory allocator can free blocks if there are no pointers to them
- How can it know what is a pointer and what is not?
- We'll make some assumptions about pointers:
 - Memory allocator can distinguish pointers from nonpointers
 - All pointers point to the start of a block in the heap
 - Application cannot hide pointers (e.g. by coercing them to an int, and then back again)

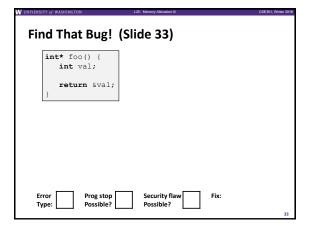

Classical GC Algorithms

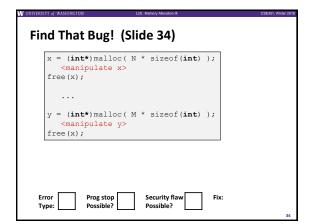

- Mark-and-sweep collection (McCarthy, 1960)
- Does not move blocks (unless you also "compact")
- Reference counting (Collins, 1960)
- Does not move blocks (not discussed)
- Copying collection (Minsky, 1963)
- Moves blocks (not discussed)
- Generational Collectors (Lieberman and Hewitt, 1983)
- Most allocations become garbage very soon, so focus reclamation work on zones of memory recently allocated.
- For more information:
 - Jones, Hosking, and Moss, The Garbage Collection Handbook: The Art of Automatic Memory Management, CRC Press, 2012.
 - Jones and Lin, Garbage Collection: Algorithms for Automatic Dynamic Memory, John Wiley & Sons, 1996.

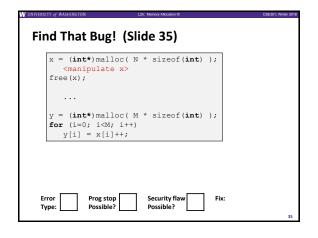


		Slide	Prog stop Possible?	Security Flaw?
b	Bad order of operations	Siide	POSSIDIE?	riaw?
)	Bad pointer arithmetic			
;)	Dereferencing a non-pointer			
))	Freed block – access again		l	
)	Freed block – free again			
)	Memory leak – failing to free memory			
i)	No bounds checking			
I)	Off-by-one error			
	Reading uninitialized memory			
	Referencing nonexistent variable			
()	Wrong allocation size			

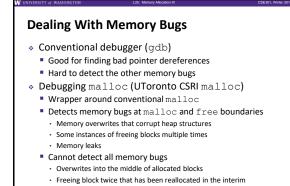








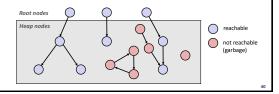
<pre>char s[8]; int i;</pre>		<pre>int *search(int *p, int val) {</pre>	
gets(s); /* reads "123456789" from s	stdin */	<pre>while (p && *p != val) p += sizeof(int);</pre>	
		return p;	



сy	<pre>pedef struct L { int val;</pre>
	struct L *next;
	list;
70	id foo() {
	<pre>list *head = (list *) malloc(sizeof(list));</pre>
	head->val = 0;
	head->next = NULL;
	<create and="" list="" manipulate="" of="" rest="" the=""></create>
	free(head);
	return;
}	

Referencing freed blocks

Dealing With Memory Bugs (cont.)


- Some malloc implementations contain checking code
 - Linux glibc malloc: setenv MALLOC_CHECK_ 2
 - FreeBSD: setenv MALLOC_OPTIONS AJR
- Binary translator: valgrind (Linux), Purify
 - Powerful debugging and analysis technique
 - Rewrites text section of executable object file
 - Can detect all errors as debugging malloc
 - Can also check each individual reference at runtime
 - Bad pointers
 - Overwriting
 - Referencing outside of allocated block

What about Java or ML or Python or ...?

- In memory-safe languages, most of these bugs are impossible
 - Cannot perform arbitrary pointer manipulation
 - Cannot get around the type system
 - Array bounds checking, null pointer checking
 - Automatic memory management
- But one of the bugs we saw earlier is possible. Which one?

Memory Leaks with GC

- Not because of forgotten free we have GC!
- Unneeded "leftover" roots keep objects reachable
- Sometimes nullifying a variable is not needed for correctness but is for performance
- Example: Don't leave big data structures you're done with in a static field

