
CSE351, Winter 2018L24: Memory Allocation II

Memory Allocation II
CSE 351 Winter 2018

Instructor:

Mark Wyse

Teaching Assistants:

Kevin Bi

Parker DeWilde

Emily Furst

Sarah House

Waylon Huang

Vinny Palaniappan

http://xkcd.com/1909/

http://xkcd.com/1444/

CSE351, Winter 2018L24: Memory Allocation II

Administrative

❖ Homework 5 due Wednesday (3/7)

❖ Lab 5 due Saturday (3/10)
▪ Recommended that you watch the Lab 5 helper videos

❖ Final Exam: Wed, March 14 @ 2:30pm in KNE 110
▪ Mult. Choice, Short Answer, True/False - everything

▪ VM – see practice questions at end of VM II lecture

▪ Caching

▪ Arrays and Structs

▪ Processes

▪ Dynamic Memory Allocation

2

CSE351, Winter 2018L24: Memory Allocation II

Keeping Track of Free Blocks

1) Implicit free list using length – links all blocks using math
▪ No actual pointers, and must check each block if allocated or free

3

20 16 824

= 4-byte box (free)

= 4-byte box (allocated)

CSE351, Winter 2018L24: Memory Allocation II

Implicit Free Lists

❖ For each block we need: size, is-allocated?

▪ Could store using two boxes, but wasteful

❖ Standard trick
▪ If blocks are aligned, some low-order bits of size are always 0

▪ Use lowest bit as an allocated/free flag (fine as long as aligning to 𝐾>1)

▪ When reading size, must remember to mask out this bit!

4

Format of
allocated and

free blocks:

a = 1: allocated block
a = 0: free block

size: block size (in bytes)

payload: application data
(allocated blocks only)

size

4 bytes

payload

a

optional
padding

e.g. with 8-byte alignment,
possible values for size:

00001000 = 8 bytes
00010000 = 16 bytes
00011000 = 24 bytes
. . .

If x is first box (header):
x = size | a;

a = x & 1;

size = x & ~1;

CSE351, Winter 2018L24: Memory Allocation II

Implicit Free List Example

❖ 8-byte alignment for payload
▪ May require initial padding (internal fragmentation)

▪ Note size: padding is considered part of previous block

❖ Special one-box marker (0|1) marks end of list
▪ Zero size is distinguishable from all other blocks

5

8|0 16|1 32|0 16|1 0|1

Free box

Allocated box

Allocated box
unused

Start of heap

8 bytes = 2 box alignment

❖ Each block begins with header (size in bytes and allocated bit)

❖ Sequence of blocks in heap (size|allocated):
8|0, 16|1, 32|0, 16|1

CSE351, Winter 2018L24: Memory Allocation II

Implicit List: Finding a Free Block

❖ First fit
▪ Search list from beginning, choose first free block that fits:

▪ Can take time linear in total number of blocks

▪ In practice can cause “splinters” at beginning of list

6

p = heap_start;

while ((p < end) && // not past end

((*p & 1) || // already allocated

(*p <= len))) { // too small

p = p + (*p & -2); // go to next block (UNSCALED +)

} // p points to selected block or end

(*p) gets the block
header

(*p & 1) extracts the
allocated bit

(*p & -2) extracts
the size

8|0 16|1 32|0 16|1 0|1

Free box

Allocated box

Allocated box
unused

p = heap_start

CSE351, Winter 2018L24: Memory Allocation II

Implicit List: Finding a Free Block

❖ Next fit
▪ Like first-fit, but search list starting where previous search

finished

▪ Should often be faster than first-fit: avoids re-scanning
unhelpful blocks

▪ Some research suggests that fragmentation is worse

❖ Best fit
▪ Search the list, choose the best free block: large enough

AND with fewest bytes left over

▪ Keeps fragments small—usually helps fragmentation

▪ Usually worse throughput

7

CSE351, Winter 2018L24: Memory Allocation II

Implicit List: Allocating in a Free Block

❖ Allocating in a free block: splitting

▪ Since allocated space might be smaller than free space, we
might want to split the block

10

void split(ptr b, int bytes) { // bytes = desired block size

int newsize = ((bytes+7) >> 3) << 3; // round up to multiple of 8

int oldsize = *b; // why not mask out low bit?

*b = newsize; // initially unallocated

if (newsize < oldsize)

*(b+newsize) = oldsize - newsize; // set length in remaining

} // part of block (UNSCALED +)

Assume ptr points to a free block and has unscaled pointer arithmetic

malloc(12):

ptr b = find(12+4)

split(b, 12+4)

allocate(b)

Free box

Allocated box

Newly-allocated
box

8|1 8|124|0

b

8|08|1 8|116|1

CSE351, Winter 2018L24: Memory Allocation II

Implicit List: Freeing a Block

❖ Simplest implementation just clears “allocated” flag
▪ void free(ptr p) {*(p-BOX) &= -2;}

▪ But can lead to “false fragmentation”

11

p

Oops! There is enough free space, but
the allocator won’t be able to find it

8|08|1 8|116|1
Free box

Allocated box

Block of interest
8|08|1 8|116|0

malloc(20)

free(p)

CSE351, Winter 2018L24: Memory Allocation II

Implicit List: Coalescing with Next

❖ Join (coalesce) with next block if also free

❖ How do we coalesce with the previous block?

12

void free(ptr p) { // p points to payload

ptr b = p – BOX; // b points to block header

*b &= -2; // clear allocated bit

ptr next = b + *b; // find next block (UNSCALED +)

if ((*next & 1) == 0) // if next block is not allocated,

*b += *next; // add its size to this block

}

logically gone

8|08|1 8|116|1

8|08|1 8|124|0free(p)

p

Free box

Allocated box

Block of interest

CSE351, Winter 2018L24: Memory Allocation II

Implicit List: Bidirectional Coalescing

❖ Boundary tags [Knuth73]

▪ Replicate header at “bottom” (end) of free blocks

▪ Allows us to traverse backwards, but requires extra space

▪ Important and general technique!

13

Boundary tag
(footer)

16/0 16/0 16/1 16/1 24/0 16/124/0 16/1

Header size

payload and
padding

a

size a

Format of
allocated and

free blocks:

a = 1: allocated block
a = 0: free block

size: block size (in bytes)

payload: application data
(allocated blocks only)

CSE351, Winter 2018L24: Memory Allocation II

Constant Time Coalescing

14

Allocated

Allocated

Allocated

Free

Free

Allocated

Free

Free

Block being freed

Case 1 Case 2 Case 3 Case 4

CSE351, Winter 2018L24: Memory Allocation II

Constant Time Coalescing

m1 1

m1 1
n 1

n 1
m2 1

m2 1

m1 1

m1 1
n 0

n 0
m2 1

m2 1

Case 1 m1 1

m1 1
n 1

n 1
m2 0

m2 0

m1 1

m1 1
n+m2 0

n+m2 0

Case 2

m1 0

m1 0
n 1

n 1
m2 1

m2 1

n+m1 0

n+m1 0
m2 1

m2 1

Case 3 m1 0

m1 0
n 1

n 1
m2 0

m2 0

n+m1+m2 0

n+m1+m2 0

Case 4

CSE351, Winter 2018L24: Memory Allocation II

Implicit Free List Review Questions

❖ What is the block header? What do we store and how?

❖ What are boundary tags and why do we need them?

❖ When we coalesce free blocks, how many neighboring blocks
do we need to check on either side? Why is this?

❖ If I want to check the size of the 𝑛-th block forward from the
current block, how many memory accesses do I make?

16

16/0 16/0 16/1 16/1 24/0 16/124/0 16/1

CSE351, Winter 2018L24: Memory Allocation II

Keeping Track of Free Blocks

1) Implicit free list using length – links all blocks using math
▪ No actual pointers, and must check each block if allocated or free

2) Explicit free list among only the free blocks, using pointers

3) Segregated free list
▪ Different free lists for different size “classes”

4) Blocks sorted by size
▪ Can use a balanced binary tree (e.g. red-black tree) with pointers within

each free block, and the length used as a key
18

20 16 824

20 16 824

= 4-byte box (free)

= 4-byte box (allocated)

CSE351, Winter 2018L24: Memory Allocation II

Explicit Free Lists

❖ Use list(s) of free blocks, rather than implicit list of all blocks
▪ The “next” free block could be anywhere in the heap

• So we need to store next/previous pointers, not just sizes

▪ Since we only track free blocks, so we can use “payload” for pointers

▪ Still need boundary tags (header/footer) for coalescing

19

size a

size a

next

prev

Free block:

size

payload and
padding

a

size a

Allocated block:

(same as implicit free list)

CSE351, Winter 2018L24: Memory Allocation II

Doubly-Linked Lists

❖ Linear

▪ Needs head/root pointer

▪ First node prev pointer is NULL

▪ Last node next pointer is NULL

▪ Good for first-fit, best-fit

❖ Circular

▪ Still have pointer to tell you which node to start with

▪ No NULL pointers (term condition is back at starting point)

▪ Good for next-fit, best-fit

20

Root ⋅⋅⋅

Start ⋅⋅⋅

CSE351, Winter 2018L24: Memory Allocation II

Explicit Free Lists

❖ Logically: doubly-linked list

❖ Physically: blocks can be in any order

21

A B C

16 16 16 16 2424 1616 16 16

Forward (next) links

Back (prev) links

A B

C

CSE351, Winter 2018L24: Memory Allocation II

Allocating From Explicit Free Lists

Note: These diagrams are not very specific about where inside a block a pointer points.
In reality we would always point to one place (e.g. start/header of a block).

22

Before

After
(with splitting)

= malloc(…)

CSE351, Winter 2018L24: Memory Allocation II

Allocating From Explicit Free Lists

Note: These diagrams are not very specific about where inside a block a pointer points.
In reality we would always point to one place (e.g. start/header of a block).

23

Before

After
(fully allocated)

= malloc(…)

CSE351, Winter 2018L24: Memory Allocation II

Freeing With Explicit Free Lists

❖ Insertion policy: Where in the free list do you put the
newly freed block?

▪ LIFO (last-in-first-out) policy
• Insert freed block at the beginning (head) of the free list

• Pro: simple and constant time

• Con: studies suggest fragmentation is worse than the alternative

▪ Address-ordered policy
• Insert freed blocks so that free list blocks are always in address order:

address(previous) < address(current) < address(next)

• Con: requires linear-time search

• Pro: studies suggest fragmentation is better than the alternative

24

CSE351, Winter 2018L24: Memory Allocation II

Coalescing in Explicit Free Lists

❖ Neighboring free blocks are already part of the free
list

1) Remove old block from free list

2) Create new, larger coalesced block

3) Add new block to free list (insertion policy)

❖ How do we tell if a neighboring block if free?
25

Block being freed
Allocated

Allocated

Case 1

Allocated

Free

Case 2

Free

Allocated

Case 3

Free

Free

Case 4

CSE351, Winter 2018L24: Memory Allocation II

Freeing with LIFO Policy (Case 1)

❖ Insert the freed block at the root of the list

26

Before

After

Root

Boundary tags not
shown, but don’t

forget about them!

free()

Root

CSE351, Winter 2018L24: Memory Allocation II

Freeing with LIFO Policy (Case 2)

❖ Splice successor block out of list, coalesce both memory blocks,
and insert the new block at the root of the list

27

Boundary tags not
shown, but don’t

forget about them!

Before

Root

free()

After

Root

CSE351, Winter 2018L24: Memory Allocation II

Freeing with LIFO Policy (Case 3)

❖ Splice predecessor block out of list, coalesce both memory
blocks, and insert the new block at the root of the list

28

Boundary tags not
shown, but don’t

forget about them!

Before

Root

free()

After

Root

CSE351, Winter 2018L24: Memory Allocation II

Freeing with LIFO Policy (Case 4)

❖ Splice predecessor and successor blocks out of list, coalesce all
3 memory blocks, and insert the new block at the root of the
list

29

Boundary tags not
shown, but don’t

forget about them!

Before

Root

free()

After

Root

CSE351, Winter 2018L24: Memory Allocation II

Explicit List Summary

❖ Comparison with implicit list:
▪ Block allocation is linear time in number of free blocks instead of all

blocks

• Much faster when most of the memory is full

▪ Slightly more complicated allocate and free since we need to splice
blocks in and out of the list

▪ Some extra space for the links (2 extra pointers needed for each free
block)

• Increases minimum block size, leading to more internal fragmentation

❖ Most common use of explicit lists is in conjunction with
segregated free lists
▪ Keep multiple linked lists of different size classes, or possibly for

different types of objects

31

