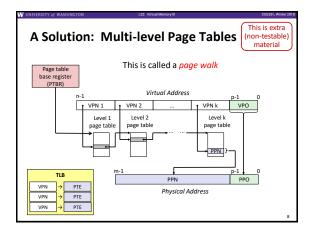


Quick Review What do Page Tables map? Where are Page Tables located? How many Page Tables are there? Can your process tell if a page fault has occurred? True / False: Virtual Addresses that are contiguous will always be contiguous in physical memory TLB stands for ______ and stores _______



Page Table Reality

- Just one issue... the numbers don't work out for the story so far!
- The problem is the page table for each process:
 - Suppose 64-bit VAs, 8 KiB pages, 8 GiB physical memory
 - How many page table entries is that?
 - About how long is each PTE?
 - Moral: Cannot use this naïve implementation of the virtual→physical page mapping – it's way too big

Multi-level Page Tables

This is extra (non-testable) material

- A tree of depth k where each node at depth i has up to 2^j children if part i of the VPN has j bits
- Hardware for multi-level page tables inherently more complicated
 - But it's a necessary complexity 1-level does not fit
- Why it works: Most subtrees are not used at all, so they are never created and definitely aren't in physical memory
 - Parts created can be evicted from cache/memory when not being used
 - Each node can have a size of ~1-100KB
- But now for a k-level page table, a TLB miss requires k + 1 cache/memory accesses
 - Fine so long as TLB misses are rare motivates larger TLBs

Practice VM Question

Our system has the follow

- Our system has the following properties
 - 1 MiB of physical address space
 - 4 GiB of virtual address space
 - 32 KiB page size
 - 4-entry fully associative TLB with LRU replacement
- a) Fill in the following blanks:

 Total entries in page table	 Minimum bit-width o

TLBT bits _____ Max # of valid entries in a page table

Practice VM Question

One process uses a page-aligned square matrix
 mat[] of 32-bit integers in the code shown below:

b) What is the largest stride (in bytes) between successive memory accesses (in the VA space)?

Practice VM Question

 One process uses a page-aligned square matrix mat[] of 32-bit integers in the code shown below:

#define MAT_SIZE = 2048
for(int i=0; i<MAT_SIZE; i++)
 mat[i*(MAT SIZE+1)] = i;</pre>

c) What are the following hit rates for the *first* execution of the for loop?

_____ TLB Hit Rate _____ Page Table Hit Rate

11

Quick Review Answers

- What do Page Tables map?
 - VPN → PPN or disk address
- Where are Page Tables located?
 - In physical memory
- How many Page Tables are there?
 - One per process
- Can your program tell if a page fault has occurred?
- Nope, but it has to wait a long time
- What is thrashing?
 - Constantly paging out and paging in
- True / False: Virtual Addresses that are contiguous will always be contiguous in physical memory
 - Could fall across a page boundary
- * TLB stands for <u>Translation Lookaside Buffer</u> and stores <u>page table entries</u>

22