
CSE351, Winter 2018L19: System Control Flow and Processes

System Control Flow and Processes
CSE 351 Winter 2018

Instructor:

Mark Wyse

Teaching Assistants:

Kevin Bi, Parker DeWilde, Emily Furst,

Sarah House, Waylon Huang, Vinny Palaniappan

http://xkcd.com/908/

http://xkcd.com/908/

CSE351, Winter 2018L19: System Control Flow and Processes

Administrative

❖ Homework 4 due Friday (2/23)

❖ Lab 4 due next Wednesday (2/28)

▪ Cache parameter puzzles and code optimizations

2

CSE351, Winter 2018L19: System Control Flow and Processes

Roadmap

3

car *c = malloc(sizeof(car));

c->miles = 100;

c->gals = 17;

float mpg = get_mpg(c);

free(c);

Car c = new Car();

c.setMiles(100);

c.setGals(17);

float mpg =

c.getMPG();

get_mpg:

pushq %rbp

movq %rsp, %rbp

...

popq %rbp

ret

Java:C:

Assembly
language:

Machine
code:

0111010000011000

100011010000010000000010

1000100111000010

110000011111101000011111

Computer
system:

OS:

Memory & data
Integers & floats
x86 assembly
Procedures & stacks
Executables
Arrays & structs
Memory & caches
Processes
Virtual memory
Memory allocation
Java vs. C

CSE351, Winter 2018L19: System Control Flow and Processes

Leading Up to Processes

❖ System Control Flow

▪ Control flow

▪ Exceptional control flow

▪ Asynchronous exceptions (interrupts)

▪ Synchronous exceptions (traps & faults)

4

CSE351, Winter 2018L19: System Control Flow and Processes

Control Flow

❖ So far: we’ve seen how the flow of control changes
as a single program executes

❖ Reality: multiple programs running concurrently

▪ How does control flow across the many components of the
system?

▪ In particular: More programs running than CPUs

❖ Exceptional control flow is basic mechanism used for:

▪ Transferring control between processes and OS

▪ Handling I/O and virtual memory within the OS

▪ Implementing multi-process apps like shells and web servers

▪ Implementing concurrency
5

CSE351, Winter 2018L19: System Control Flow and Processes

Control Flow

❖ Processors do only one thing:

▪ From startup to shutdown, a CPU simply reads and executes
(interprets) a sequence of instructions, one at a time

▪ This sequence is the CPU’s control flow (or flow of control)

6

<startup>
instr1

instr2

instr3

…
instrn

<shutdown>

Physical control flow

time

CSE351, Winter 2018L19: System Control Flow and Processes

Altering the Control Flow

❖ Up to now, two ways to change control flow:
▪ Jumps (conditional and unconditional)

▪ Call and return

▪ Both react to changes in program state

❖ Processor also needs to react to changes in system state
▪ Unix/Linux user hits “Ctrl-C” at the keyboard

▪ User clicks on a different application’s window on the screen

▪ Data arrives from a disk or a network adapter

▪ Instruction divides by zero

▪ System timer expires

❖ Can jumps and procedure calls achieve this?
▪ No – the system needs mechanisms for “exceptional” control flow!

7

CSE351, Winter 2018L19: System Control Flow and Processes

Exceptional Control Flow

❖ Exists at all levels of a computer system

❖ Low level mechanisms
▪ Exceptions

• Change in processor’s control flow in response to a system event
(i.e. change in system state, user-generated interrupt)

• Implemented using a combination of hardware and OS software

❖ Higher level mechanisms
▪ Process context switch

• Implemented by OS software and hardware timer

▪ Signals

• Implemented by OS software

• We won’t cover these – see CSE451 and CSE/EE474

8

CSE351, Winter 2018L19: System Control Flow and Processes

Exceptions

❖ An exception is transfer of control to the operating system (OS)
kernel in response to some event (i.e. change in processor state)

▪ Kernel is the memory-resident part of the OS

▪ Examples: division by 0, page fault, I/O request completes, Ctrl-C

❖ How does the system know where to jump to in the OS?

User Code OS Kernel Code

exception
exception processing by
exception handler, then:
• return to current_instr,
• return to next_instr, OR
• abort

current_instr
next_instr

event

9

CSE351, Winter 2018L19: System Control Flow and Processes

Exception Table

❖ A jump table for exceptions (also called Interrupt Vector Table)
▪ Each type of event has a unique

exception number 𝑘

▪ 𝑘 = index into exception table
(a.k.a interrupt vector)

▪ Handler 𝑘 is called each time
exception 𝑘 occurs

10

0
1

2
...

n-1

Exception
Table

code for
exception handler 0

code for
exception handler 1

code for
exception handler 2

code for
exception handler n-1

...

Exception
numbers

CSE351, Winter 2018L19: System Control Flow and Processes

Leading Up to Processes

❖ System Control Flow

▪ Control flow

▪ Exceptional control flow

▪ Asynchronous exceptions (interrupts)

▪ Synchronous exceptions (traps & faults)

11

CSE351, Winter 2018L19: System Control Flow and Processes

Asynchronous Exceptions (Interrupts)

❖ Caused by events external to the processor
▪ Indicated by setting the processor’s interrupt pin(s) (wire into CPU)

▪ After interrupt handler runs, the handler returns to “next” instruction

❖ Examples:
▪ I/O interrupts

• Hitting Ctrl-C on the keyboard

• Clicking a mouse button or tapping a touchscreen

• Arrival of a packet from a network

• Arrival of data from a disk

▪ Timer interrupt

• Every few ms, an external timer chip triggers an interrupt

• Used by the OS kernel to take back control from user programs

12

CSE351, Winter 2018L19: System Control Flow and Processes

Synchronous Exceptions

❖ Caused by events that occur as a result of executing an
instruction:
▪ Traps

• Intentional: transfer control to OS to perform some function

• Examples: system calls, breakpoint traps, special instructions

• Returns control to “next” instruction

▪ Faults

• Unintentional but possibly recoverable

• Examples: page faults, segment protection faults, integer divide-by-zero
exceptions

• Either re-executes faulting (“current”) instruction or aborts

▪ Aborts

• Unintentional and unrecoverable

• Examples: parity error, machine check (hardware failure detected)

• Aborts current program

13

CSE351, Winter 2018L19: System Control Flow and Processes

Traps Example: Opening File

❖ User calls open(filename, options)

❖ Calls __open function, which invokes system call instruction syscall

00000000000e5d70 <__open>:

...

e5d79: b8 02 00 00 00 mov $0x2,%eax # open is syscall 2

e5d7e: 0f 05 syscall # return value in %rax

e5d80: 48 3d 01 f0 ff ff cmp $0xfffffffffffff001,%rax

...

e5dfa: c3 retq

User code OS Kernel code

Exception

Open file

Returns

syscall
cmp

 %rax contains syscall number

 Other arguments in %rdi,
%rsi, %rdx, %r10, %r8, %r9

 Return value in %rax

 Negative value is an error
corresponding to negative
errno

14

CSE351, Winter 2018L19: System Control Flow and Processes

Fault Example: Page Fault

❖ User writes to memory location

❖ That portion (page) of user’s memory
is currently on disk

❖ Page fault handler must load page into physical memory

❖ Returns to faulting instruction: mov is executed again!

▪ Successful on second try

int a[1000];

int main ()

{

a[500] = 13;

}

80483b7: c7 05 10 9d 04 08 0d movl $0xd,0x8049d10

User code OS Kernel code

exception: page fault

Create page and
load into memoryreturns

movl
handle_page_fault:

15

CSE351, Winter 2018L19: System Control Flow and Processes

Fault Example: Invalid Memory Reference

❖ Page fault handler detects invalid address

❖ Sends SIGSEGV signal to user process

❖ User process exits with “segmentation fault”
16

int a[1000];

int main()

{

a[5000] = 13;

}

80483b7: c7 05 60 e3 04 08 0d movl $0xd,0x804e360

User Process OS

exception: page fault

detect invalid address

movl

signal process

handle_page_fault:

CSE351, Winter 2018L19: System Control Flow and Processes

Summary (ECF)

❖ Exceptions

▪ Events that require non-standard control flow

▪ Generated externally (interrupts) or internally (traps and
faults)

▪ After an exception is handled, one of three things may
happen:
• Re-execute the current instruction

• Resume execution with the next instruction

• Abort the process that caused the exception

17

CSE351, Winter 2018L19: System Control Flow and Processes

Processes

❖ Processes and context switching

❖ Creating new processes
▪ fork(), exec*(), and wait()

❖ Zombies

18

CSE351, Winter 2018L19: System Control Flow and Processes

What is a process?

❖ Another abstraction in our computer system

▪ Provided by the OS

▪ OS uses a data structure to represent each process

▪ Maintains the interface between the program and the
underlying hardware (CPU + memory)

❖ What do processes have to do with exceptional
control flow?

▪ Exceptional control flow is the mechanism the OS uses to
enable multiple processes to run on the same system

20

CSE351, Winter 2018L19: System Control Flow and Processes

Processes

❖ A process is an instance of a running program

▪ One of the most profound ideas in computer science

▪ Not the same as “program” or “processor”

❖ Process provides each program with two key
abstractions:

▪ Logical control flow
• Each process seems to have exclusive use of the CPU

• Provided by kernel mechanism called context switching

▪ Private address space
• Each process seems to have exclusive use of main memory

• Provided by kernel mechanism called virtual memory

21

CPU

Registers

Memory

Stack

Heap

Code
Data

CSE351, Winter 2018L19: System Control Flow and Processes

Multiprocessing: The Illusion

❖ Computer runs many processes simultaneously

▪ Applications for one or more users
• Web browsers, email clients, editors, …

▪ Background tasks
• Monitoring network & I/O devices

22

CPU

Registers

Memory

Stack

Heap

Code
Data

CPU

Registers

Memory

Stack

Heap

Code
Data …

CPU

Registers

Memory

Stack

Heap

Code
Data

CSE351, Winter 2018L19: System Control Flow and Processes

Multiprocessing: The Reality

❖ Single processor executes multiple processes concurrently
▪ Process executions interleaved, CPU runs one at a time

▪ Address spaces managed by virtual memory system (later in course)

▪ Execution context (register values, stack, …) for other processes saved in
memory 23

CPU

Registers

Memory

Stack

Heap

Code

Data

Saved
registers

Stack

Heap

Code

Data

Saved
registers

Stack

Heap

Code

Data

Saved
registers

…

CSE351, Winter 2018L19: System Control Flow and Processes

Multiprocessing

❖ Context switch
1) Save current registers in memory

24

CPU

Registers

Memory

Stack

Heap

Code

Data

Saved
registers

Stack

Heap

Code

Data

Saved
registers

Stack

Heap

Code

Data

Saved
registers

…

CSE351, Winter 2018L19: System Control Flow and Processes

Multiprocessing

❖ Context switch
1) Save current registers in memory

2) Schedule next process for execution (OS decides)

25

CPU

Registers

Memory

Stack

Heap

Code

Data

Saved
registers

Stack

Heap

Code

Data

Saved
registers

Stack

Heap

Code

Data

Saved
registers

…

CSE351, Winter 2018L19: System Control Flow and Processes

Multiprocessing

26

CPU

Registers

Memory

Stack

Heap

Code

Data

Saved
registers

Stack

Heap

Code

Data

Saved
registers

Stack

Heap

Code

Data

Saved
registers

…

❖ Context switch
1) Save current registers in memory

2) Schedule next process for execution (OS decides)

3) Load saved registers and switch address space

CSE351, Winter 2018L19: System Control Flow and Processes

Concurrent Processes

❖ Each process is a logical control flow

❖ Two processes run concurrently (are concurrent) if
their instruction executions (flows) overlap in time

▪ Otherwise, they are sequential

❖ Example: (running on single core)

▪ Concurrent: A & B, A & C

▪ Sequential: B & C

27

Process A Process B Process C

time

Assume only one CPU

CSE351, Winter 2018L19: System Control Flow and Processes

User’s View of Concurrency

❖ Control flows for concurrent processes are physically
disjoint in time

▪ CPU only executes instructions for one process at a time

❖ However, the user can think of concurrent processes
as executing at the same time, in parallel

28

Assume only one CPU

Process A Process B Process C

ti
m

e

Process A Process B Process C

User View

CSE351, Winter 2018L19: System Control Flow and Processes

Context Switching

❖ Processes are managed by a shared chunk of OS code
called the kernel
▪ The kernel is not a separate process, but rather runs as part of a user

process

❖ In x86-64 Linux:
▪ Same address in each process

refers to same shared
memory location

29

Assume only one CPU

CSE351, Winter 2018L19: System Control Flow and Processes

Context Switching

❖ Processes are managed by a shared chunk of OS code
called the kernel
▪ The kernel is not a separate process, but rather runs as part of a user

process

❖ Context switch passes control flow from one process to
another and is performed using kernel code

30

Process A Process B

user code

kernel code

user code

kernel code

user code

context switch

context switch

time

Assume only one CPU

CSE351, Winter 2018L19: System Control Flow and Processes

Creating Processes & Reaping Zombies

❖ Processes and context switching

❖ Creating new processes
▪ fork() , exec*(), and wait()

❖ Zombies

31

CSE351, Winter 2018L19: System Control Flow and Processes

Process 2

“Memory”

Stack

Heap

Code
Data

“CPU”

Registers

Creating New Processes & Programs

32

Chrome.exe

Process 1

“Memory”

Stack

Heap

Code
Data

“CPU”

Registers

fork()

exec*()

CSE351, Winter 2018L19: System Control Flow and Processes

Creating New Processes & Programs

❖ fork-exec model (Linux):
▪ fork() creates a copy of the current process

▪ exec*() replaces the current process’ code and address
space with the code for a different program
• Family: execv, execl, execve, execle, execvp, execlp

▪ fork() and execve() are system calls

❖ Other system calls for process management:
▪ getpid()

▪ exit()

▪ wait(), waitpid()

33

CSE351, Winter 2018L19: System Control Flow and Processes

fork: Creating New Processes

❖ pid_t fork(void)

▪ Creates a new “child” process that is identical to the calling “parent”
process, including all state (memory, registers, etc.)

▪ Returns 0 to the child process

▪ Returns child’s process ID (PID) to the parent process

❖ Child is almost identical to parent:
▪ Child gets an identical

(but separate) copy of the
parent’s virtual address
space

▪ Child has a different PID
than the parent

❖ fork is unique (and often confusing) because it is called once
but returns “twice”

34

pid_t pid = fork();

if (pid == 0) {

printf("hello from child\n");

} else {

printf("hello from parent\n");

}

CSE351, Winter 2018L19: System Control Flow and Processes

Fork Example

❖ Both processes continue/start execution after fork
▪ Child starts at instruction after the call to fork (storing into pid)

❖ Can’t predict execution order of parent and child

❖ Both processes start with x=1
▪ Subsequent changes to x are independent

❖ Shared open files: stdout is the same in both parent and child

35

void fork1() {

int x = 1;

pid_t pid = fork();

if (pid == 0)

printf("Child has x = %d\n", ++x);

else

printf("Parent has x = %d\n", --x);

printf("Bye from process %d with x = %d\n", getpid(), x);

}

CSE351, Winter 2018L19: System Control Flow and Processes

Fork-Exec

❖ fork-exec model:
▪ fork() creates a copy of the current process

▪ exec*() replaces the current process’ code and address
space with the code for a different program
• Whole family of exec calls – see exec(3) and execve(2)

36

// Example arguments: path="/usr/bin/ls",

// argv[0]="/usr/bin/ls", argv[1]="-ahl", argv[2]=NULL

void fork_exec(char *path, char *argv[]) {

pid_t pid = fork();

if (pid != 0) {

printf("Parent: created a child %d\n", pid);

} else {

printf("Child: about to exec a new program\n");

execv(path, argv);

}

printf("This line printed by parent only!\n");

}

Note: the return values of fork and
exec* should be checked for errors

CSE351, Winter 2018L19: System Control Flow and Processes

Exec-ing a new program

37

Stack

Code: /usr/bin/bash

Data

Heap

Stack

Code: /usr/bin/bash

Data

Heap

Stack

Code: /usr/bin/bash

Data

Heap

Stack

Code: /usr/bin/ls

Data

fork()

exec*()

Very high-level diagram of what
happens when you run the
command “ls” in a Linux shell:
❖ This is the loading part of CALL!

parent child child

CSE351, Winter 2018L19: System Control Flow and Processes

exit: Ending a process

❖ void exit(int status)

▪ Exits a process
• Status code: 0 is used for a normal exit, nonzero for abnormal exit

40

CSE351, Winter 2018L19: System Control Flow and Processes

Zombies

❖ When a process terminates, it still consumes system resources
▪ Various tables maintained by OS

▪ Called a “zombie” (a living corpse, half alive and half dead)

❖ Reaping is performed by parent on terminated child
▪ Parent is given exit status information and kernel then deletes zombie

child process

❖ What if parent doesn’t reap?
▪ If any parent terminates without reaping a child, then the orphaned

child will be reaped by init process (pid == 1)

• Note: on more recent Linux systems, init has been renamed systemd

▪ In long-running processes (e.g. shells, servers) we need explicit reaping

41

CSE351, Winter 2018L19: System Control Flow and Processes

wait: Synchronizing with Children

❖ int wait(int *child_status)

▪ Suspends current process (i.e. the parent) until one of its
children terminates

▪ Return value is the PID of the child process that terminated
• On successful return, the child process is reaped

▪ If child_status != NULL, then the *child_status
value indicates why the child process terminated
• Special macros for interpreting this status – see man wait(2)

❖ Note: If parent process has multiple children, wait
will return when any of the children terminates
▪ waitpid can be used to wait on a specific child process

42

CSE351, Winter 2018L19: System Control Flow and Processes

Process Management Summary

❖ fork makes two copies of the same process (parent & child)

▪ Returns different values to the two processes

❖ exec* replaces current process from file (new program)

▪ Two-process program:
• First fork()

• if (pid == 0) { /* child code */ } else { /* parent code */ }

▪ Two different programs:
• First fork()

• if (pid == 0) { execv(…) } else { /* parent code */ }

❖ wait or waitpid used to synchronize parent/child execution
and to reap child process

43

CSE351, Winter 2018L19: System Control Flow and Processes

Summary

❖ Processes

▪ At any given time, system has multiple active processes

▪ On a one-CPU system, only one can execute at a time, but
each process appears to have total control of the processor

▪ OS periodically “context switches” between active processes
• Implemented using exceptional control flow

❖ Process management
▪ fork: one call, two returns

▪ execve: one call, usually no return

▪ wait or waitpid: synchronization

▪ exit: one call, no return

44

