
CSE351, Winter 2018L18: Caches III

Caches III
CSE 351 Winter 2018

Instructor:

Mark Wyse

Teaching Assistants:

Kevin Bi

Parker DeWilde

Emily Furst

Sarah House

Waylon Huang

Vinny Palaniappan

https://what-if.xkcd.com/111/

https://what-if.xkcd.com/111/

CSE351, Winter 2018L18: Caches III

Administrative

❖ Midterm regrade requests due today

❖ Lab 3 due today!

❖ HW 4 out, due Friday, February 23

❖ No lecture on Monday – President’s Day!

▪ OH also cancelled

2

CSE351, Winter 2018L18: Caches III

Making memory accesses fast!

❖ Cache basics

❖ Principle of locality

❖ Memory hierarchies

❖ Cache organization

▪ Direct-mapped (sets; index + tag)

▪ Associativity (ways)

▪ Replacement policy

▪ Handling writes

❖ Program optimizations that consider caches

3

CSE351, Winter 2018L18: Caches III

General Cache Organization (𝑆, 𝐸, 𝐵)

4

𝐸 = blocks/lines per set

𝑆 = # sets
= 2𝒔

set

“line” (block plus
management bits)

0 1 2 B-1TagV

valid bit
𝐵 = bytes per block

Cache size:
𝐶 = 𝐵 × 𝐸 × 𝑆 data bytes
(doesn’t include V or Tag)

CSE351, Winter 2018L18: Caches III

Cache Read

6

0 1 2 B-1tagv

𝒕 bits 𝒔 bits 𝒃 bits

Address of byte in memory:

tag set
index

block
offset

data begins at this offset

1) Locate set
2) Check if any line in set

is valid and has
matching tag: hit

3) Locate data starting
at offset

valid bit

𝑆 = # sets
= 2𝒔

𝐸 = blocks/lines per set

𝐵 = bytes per block

CSE351, Winter 2018L18: Caches III

Types of Cache Misses: 3 C’s!

❖ Compulsory (cold) miss
▪ Occurs on first access to a block

❖ Conflict miss
▪ Conflict misses occur when the cache is large enough, but multiple data

objects all map to the same slot

• e.g. referencing blocks 0, 8, 0, 8, ... could miss every time

▪ Direct-mapped caches have more conflict misses than
𝐸-way set-associative (where 𝐸 > 1)

❖ Capacity miss
▪ Occurs when the set of active cache blocks (the working set)

is larger than the cache (just won’t fit, even if cache was fully-
associative)

▪ Note: Fully-associative only has Compulsory and Capacity misses

7

CSE351, Winter 2018L18: Caches III

What about writes?

❖ Multiple copies of data exist:
▪ L1, L2, possibly L3, main memory

❖ What to do on a write-hit?
▪ Write-through: write immediately to next level

▪ Write-back: defer write to next level until line is evicted (replaced)

• Must track which cache lines have been modified (“dirty bit”)

❖ What to do on a write-miss?
▪ Write-allocate: (“fetch on write”) load into cache, update line in cache

• Good if more writes or reads to the location follow

▪ No-write-allocate: (“write around”) just write immediately to memory

❖ Typical caches:
▪ Write-back + Write-allocate, usually

▪ Write-through + No-write-allocate, occasionally

8

CSE351, Winter 2018L18: Caches III

Write-back, write-allocate example

9

0xBEEFCache

Memory

G

0xCAFE

0xBEEF

0

F

G

dirty bit

tag (there is only one set in this tiny cache, so the tag is the entire block address!)

In this example we are sort of
ignoring block offsets. Here a block
holds 2 bytes (16 bits, 4 hex digits).

Normally a block would be much
bigger and thus there would be
multiple items per block. While only
one item in that block would be
written at a time, the entire line would
be brought into cache.

Contents of memory stored at address G

CSE351, Winter 2018L18: Caches III

Write-back, write-allocate example

10

0xBEEFCache

Memory

G

0xCAFE

0xBEEF

0

F

G

mov 0xFACE, F

dirty bit

CSE351, Winter 2018L18: Caches III

0xBEEFU 0

Write-back, write-allocate example

11

0xCAFECache

Memory

F

0xCAFE

0xBEEF

F

G

dirty bit0xCAFE 0

Step 1: Bring F into cache

mov 0xFACE, F

CSE351, Winter 2018L18: Caches III

0xBEEFU 0

Write-back, write-allocate example

12

0xCAFECache

Memory

F

0xCAFE

0xBEEF

F

G

dirty bit0xFACE 1

Step 2: Write 0xFACE
to cache only and set
dirty bit

mov 0xFACE, F

CSE351, Winter 2018L18: Caches III

0xBEEFU 0

Write-back, write-allocate example

13

0xCAFECache

Memory

F

0xCAFE

0xBEEF

F

G

mov 0xFEED, F

dirty bit0xFACE 1

Write hit!
Write 0xFEED to

cache only

mov 0xFACE, F

CSE351, Winter 2018L18: Caches III

0xBEEFU 0

Write-back, write-allocate example

14

0xCAFECache

Memory

F

0xCAFE

0xBEEF

F

G

mov G, %rax

dirty bit0xFEED 1

mov 0xFEED, Fmov 0xFACE, F

CSE351, Winter 2018L18: Caches III

Write-back, write-allocate example

15

0xBEEFCache

Memory

G

0xFEED

0xBEEF

0

F

G

dirty bit

1. Write F back to memory
since it is dirty

2. Bring G into the cache so
we can copy it into %rax

mov G, %raxmov 0xFEED, Fmov 0xFACE, F

CSE351, Winter 2018L18: Caches III

Optimizations for the Memory Hierarchy

❖ Write code that has locality!

▪ Spatial: access data contiguously

▪ Temporal: make sure access to the same data is not too far
apart in time

❖ How can you achieve locality?

▪ Adjust memory accesses in code (software) to improve miss
rate (MR)
• Requires knowledge of both how caches work as well as your system’s

parameters

▪ Proper choice of algorithm

▪ Loop transformations

16

CSE351, Winter 2018L18: Caches III

Example: Matrix Multiplication

17

C

= ×

A B

ai* b*j

cij

CSE351, Winter 2018L18: Caches III

Matrices in Memory

❖ How do cache blocks fit into this scheme?

▪ Row major matrix in memory:

18

Cache
blocks

COLUMN of matrix (blue) is spread
among cache blocks shown in red

CSE351, Winter 2018L18: Caches III

Naïve Matrix Multiply

move along rows of A

for (i = 0; i < n; i++)

move along columns of B

for (j = 0; j < n; j++)

EACH k loop reads row of A, col of B

Also read & write c(i,j) n times

for (k = 0; k < n; k++)

c[i*n+j] += a[i*n+k] * b[k*n+j];

19

= + ×
C(i,j) A(i,:)

B(:,j)
C(i,j)

CSE351, Winter 2018L18: Caches III

Cache Miss Analysis (Naïve)

❖ Scenario Parameters:
▪ Square matrix (𝑛 × 𝑛), elements are doubles

▪ Cache block size 𝐵 = 64 B = 8 doubles

▪ Cache size 𝐶 ≪ 𝑛 (much smaller than 𝑛)

❖ Each iteration:

▪
𝑛

8
+ 𝑛 =

9𝑛

8
misses

20

×=

Ignoring
matrix c

CSE351, Winter 2018L18: Caches III

Cache Miss Analysis (Naïve)

❖ Scenario Parameters:
▪ Square matrix (𝑛 × 𝑛), elements are doubles

▪ Cache block size 𝐵 = 64 B = 8 doubles

▪ Cache size 𝐶 ≪ 𝑛 (much smaller than 𝑛)

❖ Each iteration:

▪
𝑛

8
+ 𝑛 =

9𝑛

8
misses

▪ Afterwards in cache:
(schematic)

21

×=

×=

8 doubles wide

Ignoring
matrix c

CSE351, Winter 2018L18: Caches III

Cache Miss Analysis (Naïve)

❖ Scenario Parameters:
▪ Square matrix (𝑛 × 𝑛), elements are doubles

▪ Cache block size 𝐵 = 64 B = 8 doubles

▪ Cache size 𝐶 ≪ 𝑛 (much smaller than 𝑛)

❖ Each iteration:

▪
𝑛

8
+ 𝑛 =

9𝑛

8
misses

❖ Total misses:
9𝑛

8
× 𝑛2 =

9

8
𝑛3

22

×=

Ignoring
matrix c

once per element

CSE351, Winter 2018L18: Caches III

Linear Algebra to the Rescue (1)

❖ Can get the same result of a matrix multiplication by
splitting the matrices into smaller submatrices
(matrix “blocks”)

❖ For example, multiply two 4×4 matrices:

23

This is extra
(non-testable)

material

CSE351, Winter 2018L18: Caches III

Linear Algebra to the Rescue (2)

24

Matrices of size 𝑛 × 𝑛, split into 4 blocks of size 𝑟 (𝑛=4𝑟)

C22 = A21B12 + A22B22 + A23B32 + A24B42 = k A2k*Bk2

❖ Multiplication operates on small “block” matrices
▪ Choose size so that they fit in the cache!
▪ This technique called “cache blocking”

C11 C12 C13 C14

C21 C22 C23 C24

C31 C32 C43 C34

C41 C42 C43 C44

A11 A12 A13 A14

A21 A22 A23 A24

A31 A32 A33 A34

A41 A42 A43 A144

B11 B12 B13 B14

B21 B22 B23 B24

B32 B32 B33 B34

B41 B42 B43 B44

This is extra
(non-testable)

material

CSE351, Winter 2018L18: Caches III

Blocked Matrix Multiply

❖ Blocked version of the naïve algorithm:

▪ 𝑟 = block matrix size (assume 𝑟 divides 𝑛 evenly)

25

move by rxr BLOCKS now

for (i = 0; i < n; i += r)

for (j = 0; j < n; j += r)

for (k = 0; k < n; k += r)

block matrix multiplication

for (ib = i; ib < i+r; ib++)

for (jb = j; jb < j+r; jb++)

for (kb = k; kb < k+r; kb++)

c[ib*n+jb] += a[ib*n+kb]*b[kb*n+jb];

CSE351, Winter 2018L18: Caches III

Cache Miss Analysis (Blocked)

❖ Scenario Parameters:

▪ Cache block size 𝐵 = 64 B = 8 doubles

▪ Cache size 𝐶 ≪ 𝑛 (much smaller than 𝑛)

▪ Three blocks (𝑟 × 𝑟) fit into cache: 3𝑟2 < 𝐶

❖ Each block iteration:

▪ 𝑟2/8 misses per block

▪ 2𝑛/𝑟 × 𝑟2/8 = 𝑛𝑟/4

26

𝑛/𝑟 blocks
𝑟2 elements per block, 8 per cache block

𝑛/𝑟 blocks in row and column

Ignoring
matrix c

×=

CSE351, Winter 2018L18: Caches III

Cache Miss Analysis (Blocked)

❖ Scenario Parameters:

▪ Cache block size 𝐵 = 64 B = 8 doubles

▪ Cache size 𝐶 ≪ 𝑛 (much smaller than 𝑛)

▪ Three blocks (𝑟 × 𝑟) fit into cache: 3𝑟2 < 𝐶

❖ Each block iteration:

▪ 𝑟2/8 misses per block

▪ 2𝑛/𝑟 × 𝑟2/8 = 𝑛𝑟/4

▪ Afterwards in cache
(schematic)

27

𝑛/𝑟 blocks
𝑟2 elements per block, 8 per cache block

𝑛/𝑟 blocks in row and column

Ignoring
matrix c

×=

×=

CSE351, Winter 2018L18: Caches III

Cache Miss Analysis (Blocked)

❖ Scenario Parameters:

▪ Cache block size 𝐵 = 64 B = 8 doubles

▪ Cache size 𝐶 ≪ 𝑛 (much smaller than 𝑛)

▪ Three blocks (𝑟 × 𝑟) fit into cache: 3𝑟2 < 𝐶

❖ Each block iteration:

▪ 𝑟2/8 misses per block

▪ 2𝑛/𝑟 × 𝑟2/8 = 𝑛𝑟/4

❖ Total misses:

▪ 𝑛𝑟/4 × (𝑛/𝑟)2 = 𝑛3/(4𝑟)
28

𝑛/𝑟 blocks
𝑟2 elements per block, 8 per cache block

𝑛/𝑟 blocks in row and column

Ignoring
matrix c

×=

CSE351, Winter 2018L18: Caches III

Cache-Friendly Code

❖ Programmer can optimize for cache performance
▪ How data structures are organized

▪ How data are accessed
• Nested loop structure

• Blocking is a general technique

❖ All systems favor “cache-friendly code”
▪ Getting absolute optimum performance is very platform

specific
• Cache size, cache block size, associativity, etc.

▪ Can get most of the advantage with generic code
• Keep working set reasonably small (temporal locality)

• Use small strides (spatial locality)

• Focus on inner loop code

29

CSE351, Winter 2018L18: Caches III

The Memory Mountain

30

128m

32m

8m
2m

512k
128k

32k
0

2000

4000

6000

8000

10000

12000

14000

16000

s1
s3

s5
s7

s9

s11

Size (bytes)

R
ea

d
 t

h
ro

u
gh

p
u

t
(M

B
/s

)

Stride (x8 bytes)

Core i7 Haswell
2.1 GHz
32 KB L1 d-cache
256 KB L2 cache
8 MB L3 cache
64 B block size

Slopes
of spatial
locality

Ridges
of temporal
locality

L1

Mem

L2

L3

Aggressive
prefetching

CSE351, Winter 2018L18: Caches III

Matrix Multiply Visualization

❖ Here 𝑛 = 100, 𝐶 = 32 KB, 𝑟 = 30

31

Naïve:

Blocked:

≈ 1,020,000
cache misses

≈ 90,000
cache misses

CSE351, Winter 2018L18: Caches III

Anatomy of a Cache Question

❖ Cache questions come in a few flavors:

1) TIO Address Breakdown

2) For fixed cache parameters, analyze the performance of
the given code/sequence

3) For given code/sequence, how does changing your cache
parameters affect performance?

4) Average Memory Access Time (AMAT)

32

CSE351, Winter 2018L18: Caches III

❖ 1 MB address space, 125 cycles to go to memory.
Fill in the following table:

Example Cache Parameters Problem

33

Cache Size 4 KB
Block Size 16 B

Associativity 4-way
Hit Time 3 cycles

Miss Rate 20%
Write Policy Write-through

Replacement Policy LRU
Tag Bits

Index Bits
Offset Bits

AMAT

10
6
4

AMAT =
3 + 0.2 * 125 = 28

CSE351, Winter 2018L18: Caches III

Peer Instruction Question

❖ We have a cache of size 2 KB with block size of 128 B.
If our cache has 2 sets, what is its associativity?

A. 2

B. 4

C. 8

D. 16

E. We’re lost…

❖ If addresses are 16 bits wide, how wide is the Tag
field?

34

CSE351, Winter 2018L18: Caches III

Peer Instruction Question

❖ Which of the following cache statements is FALSE?

A. We can reduce compulsory misses by decreasing
our block size

B. We can reduce conflict misses by increasing
associativity

C. A write-back cache will save time for code with
good temporal locality on writes

D. A write-through cache will always match data
with the memory hierarchy level below it

E. We’re lost…

35

CSE351, Winter 2018L18: Caches III

Example Code Analysis Problem

❖ Assuming the cache starts cold (all blocks invalid),
calculate the miss rate for the following loop:

▪ 𝑚 = 20 bits, 𝐶 = 4 KB, 𝐵 = 16 B, 𝐸 = 4

#define AR_SIZE 2048

int int_ar[AR_SIZE], sum=0; // &int_ar=0x80000

for (int i=0; i<AR_SIZE; i++)

sum += int_ar[i];

for (int j=AR_SIZE-1; j>=0; j--)

sum += int_ar[i];

36

CSE351, Winter 2018L18: Caches III

Suggested Problems

❖ CS:APP 3rd

▪ Practice Problems 6.12-15

❖ AU16 Final Question F5

CSE351, Winter 2018L18: Caches III

Learning About Your Machine

❖ Linux:
▪ lscpu

▪ ls /sys/devices/system/cpu/cpu0/cache/index0/
• Ex: cat /sys/devices/system/cpu/cpu0/cache/index*/size

❖ Windows:
▪ wmic memcache get <query> (all values in KB)

▪ Ex: wmic memcache get MaxCacheSize

❖ Modern processor specs: http://www.7-cpu.com/

39

http://www.7-cpu.com/

