Caches Il

CSE 351 Winter 2018

TIMSORRY, LIE(ANT APPROVE

Instructor: THIS PERIIT. YOUR LAND ISNT
Mark Wyse ZONED FOR GIANT-MONEY-BIN
; ! CONSTRUCTION.
Teaching Assistants: ALSO, YoukE
Kevin Bi \

A DUK.
Parker DeWilde J
Emily Furst
Sarah House
Waylon Huang
Vinny Palaniappan

https://what-if xkcd.com/111/

Administrative

+ Midterm regrade requests due today
= Lab 3 due today!
« HW 4 out, due Friday, February 23

= No lecture on Monday — President’s Day!
= OH also cancelled

ASHINGTON

Making memory accesses fast!

+ Cache basics

« Principle of locality

« Memory hierarchies

« Cache organization

L] Direct—mabped (sets; index + tag)
= Associativity (ways)

= Replacement policy

= Handling writes

Program optimizations that consider caches

NGTON L18: Caches Il Winter 2018

General Cache Organization (S, E, B)

E =blocks/lines per set
A

N, set
[Il 2l I
line” (block plus
| ” |""| | management bits)
S =#sets [][Jeooof]
=28
seceeesscscccserssssccccccns
[II ool |
Cache size:

C =B XE XS data bytes
nn | (doesn’t include V or Tag)

valid bit B = bytes per block

L15: Caches I

cache Read 1) Locate set

2) Check if any line in set
is valid and has
E =blocks/lines per set matching tag: hit
A Locate data starting
at offset

N
J
L

Address of byte in memory:
[I [o2-1 |

tag set block
index offset

[I oo IQ

S =#sets [Il Jooo|]
=28

| data begins at this offset
| DEDE=E|
valid bit —~——

B = bytes per block

L18: Caches Il

Types of Cache Misses: 3 C’s!

Compulsory (cold) miss
® Occurs on first access to a block
> Conflict miss

= Conflict misses occur when the cache is large enough, but multiple data
objects all map to the same slot
- e.g. referencing blocks 0, 8, 0, 8, ... could miss every time

= Direct-mapped caches have more conflict misses than
E-way set-associative (where E > 1)

« Capacity miss

Occurs when the set of active cache blocks (the working set)
is larger than the cache (just won't fit, even if cache was fully-
associative)

Note: Fully-associative only has Compulsory and Capacity misses

https://what-if.xkcd.com/111/

What about writes?

= Multiple copies of data exist:
= L1, L2, possibly L3, main memory
« What to do on a write-hit?
= \Write-through: write immediately to next level
= Write-back: defer write to next level until line is evicted (replaced)
+ Must track which cache lines have been modified (“dirty bit”)
« What to do on a write-miss?
= Write-allocate: (“fetch on write”) load into cache, update line in cache
+ Good if more writes or reads to the location follow
= No-write-allocate: (“write around”) just write immediately to memory
+ Typical caches:
= Write-back + Write-allocate, usually
= Write-through + No-write-allocate, occasionally

Write-back, write-allocate example

Contents of memory stored at address G

v
Cache || G| 0xBEEF [o] |<\ dirty bit

tag (there is only one set in this tiny cache, so the tag is the entire block address!)

I this example we are sort of
i OxCAFE ignoring block offsets. Here a block
s Swnrnr holds 2 bytes (16 bits, 4 hex digits).

Normally a block would be much
bigger and thus there would be
multiple items per block. While only
one item in that block would be
written at a time, the entire line would
be brought into cache. B

Write-back, write-allocate example

mov OxFACE, F

Cache | [e] 0xBEEF [o] |<\ dirty bit

Memory F 0xCAFE
G 0xXBEEF

Write-back, write-allocate example

mov OxFACE, F

Cache || F 0xCAFE |o||(\dirtybit

Step 1: Bring F into cache

Memory F 0xCAFE
G 0xXBEEF

L15: Caches I

Write-back, write-allocate example

mov OxFACE, F

Cache | F] 0xFACE |1||<\dmybit

Step 2: Write 0xFACE
to cache only and set
dirty bit

s

Write-back, write-allocate example

mov OxFACE, F mov OXFEED, F
Cache | F OxFACE [1] |<—\ dirty bit
Write hit!
Write 0XFEED to
cache only

Write-back, write-allocate example

mov OxFACE, F

Cache || F 0XFEED |1||<\dirtybit

mov OxFEED, F mov G, $rax

s

Write-back, write-allocate example

mov OxFACE, F mov G, $rax

To] |<\ dirty bit

1. Write F back to memory
since it is dirty

2. Bring G into the cache so

we can copy it into $rax

mov OxFEED, F

Cache || G | 0xBEEF

G 0xBEEF

Optimizations for the Memory Hierarchy

« Write code that has locality!
= Spatial: access data contiguously

= Temporal: make sure access to the same data is not too far
apartin time

« How can you achieve locality?

= Adjust memory accesses in code (software) to improve miss
rate (MR)

+ Requires knowledge of both how caches work as well as your system’s
parameters

= Proper choice of algorithm
® Loop transformations

C A B

Matrices in Memory

« How do cache blocks fit into this scheme?
= Row major matrix in memory:

COLUMN of matrix (blue) is spread —
among cache blocks shown in red

Naive Matrix Multiply

move along rows of A
for (i = 0; 1 < n; i++)
move along columns of B
for (j = 0; j < n; j++)
EACH k loop reads row of A, col of B
Also read & write c(i,j) n times
for (k = 0; k < n; k++)
cli*n+j] += al[i*n+k] * b[k*n+j];

C(i,j) C(i,j) Ali:)
]]

= + X B(.j)

Cache Miss Analysis (Naive)

« Scenario Parameters:
= Square matrix (n X n), elements are doubles
= Cache block size B = 64 B = 8 doubles
= Cache size C < n (much smaller than n)

« Each iteration:

n Iin .
" —+n =— misses
8 8

matrix c

Cache Miss Analysis (Naive)

« Scenario Parameters:
= Square matrix (n X n), elements are doubles
= Cache block size B = 64 B = 8 doubles
= Cache size C < n (much smaller than n)

= Each iteration:
= X
“2in =9—nmisses
8 8
= Afterwards in cache:
(schematic) = X

8 doubles wide

21

Cache Miss Analysis (Naive)

« Scenario Parameters:
= Square matrix (n X n), elements are doubles
= Cache block size B = 64 B = 8 doubles
= Cache size C < n (much smaller than n)

« Each iteration:

n n .
" —+n =—misses
8 8

) on 9
+ Total misses: 5 % n2 = §n3

once per element

L18: Caches Il

Linear Algebra to the Rescue (1)

= Can get the same result of a matrix multiplication by
splitting the matrices into smaller submatrices
(matrix “blocks”)

« For example, multiply two 4x4 matrices:
dyy Gy g3 Gy
Qzy Qgp Op3 Gpyf _ [Au Ay
d3; Q3z G33 Q34 Ay As
gy Gy (43 Gy

|AE = [(AIJBLI +ALJBZI) (AILHIZ +A125£2)}

A=

2], with B defined similarly.

(Ag1Byy + Ay By1) (Agy Byy + Ay, Bys)

L15: Caches I

C1 | Cip Ci3 i Cyy An A {Ag | A By | Bip | Biz | By

C21 C22 CZ3 C24 A21 AZZ A23 A24 BZl BZZ BZ3 824

Ca1 | Caz2 | Cuz | Cay Az i A | Ags | A Bss | By | Bz | Bay

Cu1{Cs2 | Ci3 | Cus Agt | Ag i Agz | Arag By | Bao | Bz | Bay

Matrices of size n X n, split into 4 blocks of size r (n=4r)
Cpy = AgiBiy + ApByy + AgsBay + AyByy = X Ay*By,

« Multiplication operates on small “block” matrices
= Choose size so that they fit in the cache!
= This technique called “cache blocking”

Blocked Matrix Multiply

« Blocked version of the naive algorithm:

move by rxr BLOCKS now
for (i 0; 1 < n; i +=r)
for (j = 0; jJ < n; j += 1)
for (k = 0; k < n; k += r)
block matrix multiplication

for (ib = i; ib < i+r; ib++)
for (jb = j; jb < j+r; jb++)
for (kb = k; kb < k+r; kb++)
c[ib*n+jb] += al[ib*n+kb]*b[kb*n+jb];

" 1 = block matrix size (assume r divides n evenly)

Cache Miss Analysis (Blocked)

« Scenario Parameters:
= Cache block size B = 64 B = 8 doubles
= Cache size C < n (much smaller than n)
= Three blocks M (r X r) fitinto cache: 31?2 < C

/7 blocks
72 elements per block, 8 per cache block ™
4 . Lo ‘ >
* Eacfyblock iteration: L] -l
= r2/8 misses per block = X =
= 2n/r X r?/8 =nr/4 |

n/r blocks in row and column

Cache Miss Analysis (Blocked)

« Scenario Parameters:
= Cache block size B = 64 B = 8 doubles
= Cache size C < n (much smaller than n)
= Three blocks M (r X r) fitinto cache: 3r?2 < C
72 elements per block, 8 per cache block n/r blocks
@ Ead)/b/lock iteration: W] EEEEE
= 2 /8 misses per block = X
= 2n/r xr?/8 =nr/4
n/r blocks in row and column
= Afterwardsincache [] EEEEE
(schematic) — X

=

Cache Miss Analysis (Blocked)

« Scenario Parameters:
= Cache block size B = 64 B = 8 doubles
= Cache size C < n (much smaller than n)
= Three blocks M (r X r) fitinto cache: 312 < C

72 elements per block, 8 per cache block n/r blocks

* Eacl')/b/lock iteration: L] =7
= r2 /8 misses per block = X |
= 2n/rXr?/8 =nr/4 =

n/r blocks in row and column

« Total misses:
= nr/4x (n/r)2 =n3/(4r)

Cache-Friendly Code

= Programmer can optimize for cache performance
® How data structures are organized
" How data are accessed
« Nested loop structure
- Blocking is a general technique
= All systems favor “cache-friendly code”
= Getting absolute optimum performance is very platform
specific
«+ Cache size, cache block size, associativity, etc.
= Can get most of the advantage with generic code
« Keep working set reasonably small (temporal locality)
« Use small strides (spatial locality)
« Focus oninner loop code

L15: Caches I

Core i7 Haswell
i 2.1GHz
The Memory Mountain T deache
256 KB L2 cache
Aggressive 8 MB L3 cache

prefetching \ 64 B block size
16000 -

14000 -

12000 -
10000 -

8000 4 Ridges
> of temporal

locality

Read throughput (MB/s)

6000
4000 -

2000 -
Slopes /
&

of spatial) o
localit) T o128k
v s T sk

2m

T " em
Stride (x8 bytes) s9 g Size (bytes)

Matrix Multiply Visualization

« Heren =100, C =32 KB, r =30
Naive:

Blocked:

Cache misses: 551888
)

Cache misses: 53,888
= 1,020,000
cache misses
= 90,000
cache misses

UNIVERSITY of WASHINGTON

Anatomy of a Cache Question

« Cache questions come in a few flavors:
1) TIO Address Breakdown

2) For fixed cache parameters, analyze the performance of
the given code/sequence

3) For given code/sequence, how does changing your cache
parameters affect performance?

4) Average Memory Access Time (AMAT)

INIVERSITY of WASHINGTON

Example Cache Parameters Problem

= 1 MB address space, 125 cycles to go to memory.
Fill in the following table:

Cache Size 4KB
Block Size 168
iativif 4-way
Hit Time 3 cycles
Miss Rate 20%
Write Policy Write-through
Policy LRU
Tag Bits 10
Index Bits 6
Offset Bits 4
AMAT AMAT =

3+0.2*125=28

Peer Instruction Question

« We have a cache of size 2 KB with block size of 128 B.
If our cache has 2 sets, what is its associativity?

A
B.
C. 8
D. 16

E. We're lost...

« If addresses are 16 bits wide, how wide is the Tag
field?

Peer Instruction Question

= Which of the following cache statements is FALSE?
A.

B. We can reduce conflict misses by increasing
associativity

C. A write-back cache will save time for code with
good temporal locality on writes

D. A write-through cache will always match data
with the memory hierarchy level below it

E. We're lost...

UNIVERSITY of WASHINGTON

Example Code Analysis Problem

« Assuming the cache starts cold (all blocks invalid),
calculate the miss rate for the following loop:
" m=20bits, C=4KB,B=16B,E =4
#define AR SIZE 2048
int int_ar[AR_SIZE], sum=0;
for (int i=0; i<AR7$IZE; i++)

sum += int_ar[i];

for (int j=AR SIZE-1; j>=0; j--)

// &int_ar=0x80000

sum += int_ar([i];

NIVERSITY of WASHINGTON

Suggested Problems

+ CS:APP 3d
® Practice Problems 6.12-15
« AU16 Final Question F5

Learning About Your Machine

+ Linux:
" lscpu
= |s /sys/devices/system/cpu/cpu0/cache/index0/
+ Ex: cat /sys/devices/system/cpu/cpu0/cache/index*/size
« Windows:
®" wmic memcache get <query> (all valuesin KB)
" Ex: wnic memcache get MaxCacheSize

« Modern processor specs: http://www.7-cpu.com/

http://www.7-cpu.com/

