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Administrative

❖ Lab 3 due Friday (2/16)

❖ Homework 4 released today (Structs, Caches)

❖ Midterm Regrade Requests due Friday (2/16)
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An Example Memory Hierarchy
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registers

on-chip L1
cache (SRAM)

main memory
(DRAM)

local secondary storage
(local disks)

Larger,  
slower, 
cheaper 
per byte

remote secondary storage
(distributed file systems, web servers)

Local disks hold files 
retrieved from disks on 
remote network servers

Main memory holds disk blocks 
retrieved from local disks

on-chip L2
cache (SRAM)

L1 cache holds cache lines retrieved from L2 cache

CPU registers hold words retrieved from L1 cache

L2 cache holds cache lines retrieved 
from main memory

Smaller,
faster,
costlier
per byte
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An Example Memory Hierarchy
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registers

on-chip L1
cache (SRAM)

main memory
(DRAM)

local secondary storage
(local disks)

Larger,  
slower, 
cheaper 
per byte

remote secondary storage
(distributed file systems, web servers)

on-chip L2
cache (SRAM)

explicitly program-controlled 
(e.g. refer to exactly %rax, %rbx)

Smaller,
faster,
costlier
per byte

program sees “memory”;
hardware manages caching

transparently
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Memory Hierarchies

❖ Fundamental idea of a memory hierarchy:

▪ For each level k, the faster, smaller device at level k serves 
as a cache for the larger, slower device at level k+1

❖ Why do memory hierarchies work?

▪ Because of locality, programs tend to access the data at 
level k more often than they access the data at level k+1

▪ Thus, the storage at level k+1 can be slower, and thus larger 
and cheaper per bit

❖ Big Idea:  The memory hierarchy creates a large pool 
of storage that costs as much as the cheap storage 
near the bottom, but that serves data to programs at 
the rate of the fast storage near the top
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Making memory accesses fast!

❖ Cache basics

❖ Principle of locality

❖ Memory hierarchies

❖ Cache organization

▪ Direct-mapped (sets; index + tag)

▪ Associativity (ways)

▪ Replacement policy

▪ Handling writes

❖ Program optimizations that consider caches
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Cache Organization

❖ Fundamental Equation: 𝐶 = 𝑆 ∗ 𝐸 ∗ 𝐵

❖ Cache Size (𝐶):  total capacity (Bytes) of cache

❖ Block Size (𝐵):  unit of transfer between $ and Mem

❖ Sets (𝑆):  collection of blocks

▪ Cache can be thought of as an “array of sets”

❖ Associativity (𝐸):  number of cache blocks per set

❖ Address Bits (𝑚):  number of bits in address
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Cache Organization (1)

❖ Block Size (𝐵):  unit of transfer between $ and Mem

▪ Given in bytes and always a power of 2 (e.g. 64 Bytes)

▪ Blocks consist of adjacent bytes (differ in address by 1)
• Spatial locality!

❖ Offset field 

▪ Low-order log2 𝐵 = 𝒃 bits of address tell you which byte 
within a block
• (address) mod 2𝑛 = 𝑛 lowest bits of address

▪ (address) modulo (# of bytes in a block)
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Block Number Block Offset𝒎-bit address:
(refers to byte in memory)

𝒃 bits𝒎− 𝒃 bits
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Cache Organization (2)

❖ Cache Size (𝐶):  amount of data the $ can store

▪ Cache can only hold so much data (subset of next level)

▪ Given in bytes (𝐶) or number of blocks (𝐶/𝐵)

▪ Example:  𝐶 = 32 KB = 512 blocks if using 64-Byte blocks

❖ Where should data go in the cache?

▪ We need a mapping from memory addresses to specific 
locations in the cache to make checking the cache for an 
address fast

❖ What is a data structure that provides fast lookup?

▪ Hash table!
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Review:  Hash Tables for Fast Lookup
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Place Data in Cache by Hashing Address

❖ Map to cache set index from 
block address

▪ Use next log2 𝐶/𝐵 = 𝒔 bits 

▪ (block address) mod (# blocks in 
cache)
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Block Addr Block Data

0000

0001

0010

0011
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Here 𝐵 = 4 B
and 𝐶/𝐵 = 4
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Place Data in Cache by Hashing Address

❖ Map to cache index from block 
address

▪ Lets adjacent blocks fit in cache 
simultaneously!
• Consecutive blocks go in consecutive 

cache indices
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Place Data in Cache by Hashing Address

❖ Collision!

▪ This might confuse the cache later 
when we access the data

▪ Solution?
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Here 𝐵 = 4 B
and 𝐶/𝐵 = 4
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Tags Differentiate Blocks in Same Index

❖ Tag = rest of address bits

▪ 𝒕 bits = 𝒎− 𝒔 − 𝒃

▪ Check this during a cache lookup
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Block Addr Block Data

0000

0001

0010

0011

0100

0101

0110

0111

1000
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Here 𝐵 = 4 B
and 𝐶/𝐵 = 4
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Checking for a Requested Address

❖ CPU sends address request for chunk of data

▪ Address and requested data are not the same thing!
• Analogy:  your friend ≠ his or her phone number

❖ TIO address breakdown:

▪ Index field tells you where to look in cache

▪ Tag field lets you check that data is the block you want

▪ Offset field selects specified start byte within block

▪ Note: 𝒕 and 𝒔 sizes will change based on hash function
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Tag (𝒕) Offset (𝒃)𝒎-bit address:

Block Number

Index (𝒔)
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Direct-Mapped Cache

❖ Hash function:  (block address) 
mod (# of blocks in cache)

▪ Each memory address maps to 
exactly one index in the cache

▪ Fast (and simpler) to find an 
address
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Block Addr Block Data
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00 11
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Here 𝐵 = 4 B
and 𝐶/𝐵 = 4
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Direct-Mapped Cache Problem

❖ What happens if we access the 
following addresses?

▪ 8, 24, 8, 24, 8, …?

▪ Conflict in cache (misses!)

▪ Rest of cache goes unused

❖ Solution?
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Block Addr Block Data

00 00

00 01

00 10

00 11

01 00

01 01
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Memory Cache
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Here 𝐵 = 4 B
and 𝐶/𝐵 = 4
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Associativity

❖ What if we could store data in any place in the cache?
▪ More complicated hardware = more power consumed, slower

❖ So we combine the two ideas:
▪ Each address maps to exactly one set

▪ Each set can store block in more than one way

18

0

1

2

3

4

5

6

7

0

1

2

3

Set

0

1

Set

1-way:

8 sets,

1 block each

2-way:

4 sets,

2 blocks each

4-way:

2 sets,

4 blocks each

0

Set

8-way:

1 set,

8 blocks

direct mapped fully associative



4

CSE351, Winter 2018L17:  Caches II

Cache Organization (3)

❖ Associativity (𝐸):  # of ways for each set

▪ Such a cache is called an “𝐸-way set associative cache”

▪ We now index into cache sets, of which there are 𝐶/𝐵/𝐸

▪ Use lowest log2 𝐶/𝐵/𝐸 = 𝒔 bits of block address
• Direct-mapped: 𝐸 = 1, so 𝒔 = log2 𝐶/𝐵 as we saw previously

• Fully associative: 𝐸 = 𝐶/𝐵, so 𝒔 = 0 bits
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Decreasing associativity
Fully associative
(only one set)Direct mapped

(only one way)

Increasing associativity

Selects the setUsed for tag comparison Selects the byte from block

Tag (𝒕) Index (𝒔) Offset (𝒃)
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Example Placement

❖ Where would data from address 0x1833 be placed?

▪ Binary:  0b 0001 1000 0011 0011
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𝒔 = ? 

block size: 16 B
capacity: 8 blocks
address: 16 bits

Set Tag Data
0
1
2
3
4
5
6
7

Direct-mapped

Set Tag Data

0

1

2

3

Set Tag Data

0

1

2-way set associative 4-way set associative

Tag (𝒕) Offset (𝒃)𝒎-bit address: Index (𝒔)

𝒔 = log2 𝐶/𝐵/𝐸 𝒃 = log2 𝐵𝒕 = 𝒎–𝒔–𝒃

𝒔 = ? 𝒔 = ? 
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Block Replacement

❖ Any empty block in the correct set may be used to store block

❖ If there are no empty blocks, which one should we replace?
▪ No choice for direct-mapped caches

▪ Caches typically use something close to least recently used (LRU)
(hardware usually implements “not most recently used”)
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Set Tag Data
0
1
2
3
4
5
6
7

Direct-mapped

Set Tag Data

0

1

2

3

Set Tag Data

0

1

2-way set associative 4-way set associative
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General Cache Organization (𝑆, 𝐸, 𝐵)
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𝐸 = blocks/lines per set

𝑆 = # sets
= 2𝒔

set

“line” (block plus
management bits)

0 1 2 B-1TagV

valid bit
𝐵 = bytes per block

Cache size:
𝐶 = 𝐵 × 𝐸 × 𝑆 data bytes
(doesn’t include V or Tag)
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Notation Review

❖ We just introduced a lot of new variable names!

▪ Please be mindful of block size notation when you look at 
past exam questions or are watching videos
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Variable This Quarter Formulas

Block size 𝐵

𝑀 = 2𝑚 ↔𝑚 = log2𝑀
𝑆 = 2𝒔↔ 𝒔 = log2 𝑆

𝐵 = 2𝒃↔ 𝒃 = log2𝐵

𝐶 = 𝐵 × 𝐸 × 𝑆
𝒔 = log2 𝐶/𝐵/𝐸
𝒎 = 𝒕 + 𝒔 + 𝒃

Cache size 𝐶

Associativity 𝐸

Number of Sets 𝑆

Address space 𝑀

Address width 𝒎

Tag field width 𝒕

Index field width 𝒔

Offset field width 𝒃
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Cache Read
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0 1 2 B-1tagv

𝒕 bits 𝒔 bits 𝒃 bits

Address of byte in memory:

tag set
index

block
offset

data begins at this offset

1) Locate set
2) Check if any line in set

is valid and has 
matching tag: hit

3) Locate data starting
at offset

valid bit

𝑆 = # sets
= 2𝒔

𝐸 = blocks/lines per set

𝐵 = bytes per block
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Example:  Direct-Mapped Cache (𝐸 = 1)
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Direct-mapped:  One line per set
Block Size 𝐵 = 8 Bytes

𝒕 bits 0…01 100

Address of int:

0 1 2 7tagv 3 654

0 1 2 7tagv 3 654

0 1 2 7tagv 3 654

0 1 2 7tagv 3 654

find set

𝑆 = 2𝒔 sets
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Example:  Direct-Mapped Cache (𝐸 = 1)
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𝒕 bits 0…01 100

Address of int:

0 1 2 7tagv 3 654

match?: yes = hitvalid?   +

block offset

Direct-mapped:  One line per set
Block Size 𝐵 = 8 Bytes
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Example:  Direct-Mapped Cache (𝐸 = 1)

27

𝒕 bits 0…01 100

Address of int:

0 1 2 7tagv 3 654

match?: yes = hitvalid?   +

int (4 B) is here

block offset

No match? Then old line gets evicted and replaced

This is why we 
want alignment!

Direct-mapped:  One line per set
Block Size 𝐵 = 8 Bytes
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Example:  Set-Associative Cache (𝐸 = 2)
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𝒕 bits 0…01 100

Address of short int:

find set

0 1 2 7tagv 3 6540 1 2 7tagv 3 654

0 1 2 7tagv 3 6540 1 2 7tagv 3 654

0 1 2 7tagv 3 6540 1 2 7tagv 3 654

0 1 2 7tagv 3 6540 1 2 7tagv 3 654

2-way:  Two lines per set
Block Size 𝐵 = 8 Bytes
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0 1 2 7tagv 3 6540 1 2 7tagv 3 654

Example:  Set-Associative Cache (𝐸 = 2)
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𝒕 bits 0…01 100
compare both

valid?  + match: yes = hit

block offset

tag

2-way:  Two lines per set
Block Size 𝐵 = 8 Bytes

Address of short int:
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0 1 2 7tagv 3 6540 1 2 7tagv 3 654

Example:  Set-Associative Cache (𝐸 = 2)
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𝒕 bits 0…01 100

valid?  + match: yes = hit

block offset

short int (2 B) is here

No match?
• One line in set is selected for eviction and replacement
• Replacement policies: random, least recently used (LRU), …

compare both

Address of short int:
2-way:  Two lines per set
Block Size 𝐵 = 8 Bytes


