
1

CSE351, Winter 2018L17: Caches II

Caches II
CSE 351 Winter 2018

Instructor:

Mark Wyse

Teaching Assistants:

Kevin Bi

Parker DeWilde

Emily Furst

Sarah House

Waylon Huang

Vinny Palaniappan

CSE351, Winter 2018L17: Caches II

Administrative

❖ Lab 3 due Friday (2/16)

❖ Homework 4 released today (Structs, Caches)

❖ Midterm Regrade Requests due Friday (2/16)

2

CSE351, Winter 2018L17: Caches II

An Example Memory Hierarchy

3

registers

on-chip L1
cache (SRAM)

main memory
(DRAM)

local secondary storage
(local disks)

Larger,
slower,
cheaper
per byte

remote secondary storage
(distributed file systems, web servers)

Local disks hold files
retrieved from disks on
remote network servers

Main memory holds disk blocks
retrieved from local disks

on-chip L2
cache (SRAM)

L1 cache holds cache lines retrieved from L2 cache

CPU registers hold words retrieved from L1 cache

L2 cache holds cache lines retrieved
from main memory

Smaller,
faster,
costlier
per byte

CSE351, Winter 2018L17: Caches II

An Example Memory Hierarchy

4

registers

on-chip L1
cache (SRAM)

main memory
(DRAM)

local secondary storage
(local disks)

Larger,
slower,
cheaper
per byte

remote secondary storage
(distributed file systems, web servers)

on-chip L2
cache (SRAM)

explicitly program-controlled
(e.g. refer to exactly %rax, %rbx)

Smaller,
faster,
costlier
per byte

program sees “memory”;
hardware manages caching

transparently

CSE351, Winter 2018L17: Caches II

Memory Hierarchies

❖ Fundamental idea of a memory hierarchy:

▪ For each level k, the faster, smaller device at level k serves
as a cache for the larger, slower device at level k+1

❖ Why do memory hierarchies work?

▪ Because of locality, programs tend to access the data at
level k more often than they access the data at level k+1

▪ Thus, the storage at level k+1 can be slower, and thus larger
and cheaper per bit

❖ Big Idea: The memory hierarchy creates a large pool
of storage that costs as much as the cheap storage
near the bottom, but that serves data to programs at
the rate of the fast storage near the top

5

CSE351, Winter 2018L17: Caches II

Making memory accesses fast!

❖ Cache basics

❖ Principle of locality

❖ Memory hierarchies

❖ Cache organization

▪ Direct-mapped (sets; index + tag)

▪ Associativity (ways)

▪ Replacement policy

▪ Handling writes

❖ Program optimizations that consider caches

6

2

CSE351, Winter 2018L17: Caches II

Cache Organization

❖ Fundamental Equation: 𝐶 = 𝑆 ∗ 𝐸 ∗ 𝐵

❖ Cache Size (𝐶): total capacity (Bytes) of cache

❖ Block Size (𝐵): unit of transfer between $ and Mem

❖ Sets (𝑆): collection of blocks

▪ Cache can be thought of as an “array of sets”

❖ Associativity (𝐸): number of cache blocks per set

❖ Address Bits (𝑚): number of bits in address

7

CSE351, Winter 2018L17: Caches II

Cache Organization (1)

❖ Block Size (𝐵): unit of transfer between $ and Mem

▪ Given in bytes and always a power of 2 (e.g. 64 Bytes)

▪ Blocks consist of adjacent bytes (differ in address by 1)
• Spatial locality!

❖ Offset field

▪ Low-order log2 𝐵 = 𝒃 bits of address tell you which byte
within a block
• (address) mod 2𝑛 = 𝑛 lowest bits of address

▪ (address) modulo (# of bytes in a block)

8

Block Number Block Offset𝒎-bit address:
(refers to byte in memory)

𝒃 bits𝒎− 𝒃 bits

CSE351, Winter 2018L17: Caches II

Cache Organization (2)

❖ Cache Size (𝐶): amount of data the $ can store

▪ Cache can only hold so much data (subset of next level)

▪ Given in bytes (𝐶) or number of blocks (𝐶/𝐵)

▪ Example: 𝐶 = 32 KB = 512 blocks if using 64-Byte blocks

❖ Where should data go in the cache?

▪ We need a mapping from memory addresses to specific
locations in the cache to make checking the cache for an
address fast

❖ What is a data structure that provides fast lookup?

▪ Hash table!

9

CSE351, Winter 2018L17: Caches II

Review: Hash Tables for Fast Lookup

10

0

1

2

3

4

5

6

7

8

9

Insert:
5

27

34

102

119

Apply hash function to map data
to “buckets”

CSE351, Winter 2018L17: Caches II

Place Data in Cache by Hashing Address

❖ Map to cache set index from
block address

▪ Use next log2 𝐶/𝐵 = 𝒔 bits

▪ (block address) mod (# blocks in
cache)

11

Block Addr Block Data

0000

0001

0010

0011

0100

0101

0110

0111

1000

1001

1010

1011

1100

1101

1110

1111

Memory Cache

Index Block Data

00

01

10

11

Here 𝐵 = 4 B
and 𝐶/𝐵 = 4

CSE351, Winter 2018L17: Caches II

Place Data in Cache by Hashing Address

❖ Map to cache index from block
address

▪ Lets adjacent blocks fit in cache
simultaneously!
• Consecutive blocks go in consecutive

cache indices

12

Block Addr Block Data

0000

0001

0010

0011

0100

0101

0110

0111

1000

1001

1010

1011

1100

1101

1110

1111

Memory Cache

Index Block Data

00

01

10

11

Here 𝐵 = 4 B
and 𝐶/𝐵 = 4

3

CSE351, Winter 2018L17: Caches II

Place Data in Cache by Hashing Address

❖ Collision!

▪ This might confuse the cache later
when we access the data

▪ Solution?

13

Block Addr Block Data

0000

0001

0010

0011

0100

0101

0110

0111

1000

1001

1010

1011

1100

1101

1110

1111

Memory Cache

Index Block Data

00

01

10

11

Here 𝐵 = 4 B
and 𝐶/𝐵 = 4

CSE351, Winter 2018L17: Caches II

Tags Differentiate Blocks in Same Index

❖ Tag = rest of address bits

▪ 𝒕 bits = 𝒎− 𝒔 − 𝒃

▪ Check this during a cache lookup

14

Block Addr Block Data

0000

0001

0010

0011

0100

0101

0110

0111

1000

1001

1010

1011

1100

1101

1110

1111

Memory Cache

Index Tag Block Data

00 00

01

10 01

11 01

Here 𝐵 = 4 B
and 𝐶/𝐵 = 4

CSE351, Winter 2018L17: Caches II

Checking for a Requested Address

❖ CPU sends address request for chunk of data

▪ Address and requested data are not the same thing!
• Analogy: your friend ≠ his or her phone number

❖ TIO address breakdown:

▪ Index field tells you where to look in cache

▪ Tag field lets you check that data is the block you want

▪ Offset field selects specified start byte within block

▪ Note: 𝒕 and 𝒔 sizes will change based on hash function
15

Tag (𝒕) Offset (𝒃)𝒎-bit address:

Block Number

Index (𝒔)

CSE351, Winter 2018L17: Caches II

Direct-Mapped Cache

❖ Hash function: (block address)
mod (# of blocks in cache)

▪ Each memory address maps to
exactly one index in the cache

▪ Fast (and simpler) to find an
address

16

Block Addr Block Data

00 00

00 01

00 10

00 11

01 00

01 01

01 10

01 11

10 00

10 01

10 10

10 11

11 00

11 01

11 10

11 11

Memory Cache

Index Tag Block Data

00 00

01 11

10 01

11 01

Here 𝐵 = 4 B
and 𝐶/𝐵 = 4

CSE351, Winter 2018L17: Caches II

Direct-Mapped Cache Problem

❖ What happens if we access the
following addresses?

▪ 8, 24, 8, 24, 8, …?

▪ Conflict in cache (misses!)

▪ Rest of cache goes unused

❖ Solution?

17

Block Addr Block Data

00 00

00 01

00 10

00 11

01 00

01 01

01 10

01 11

10 00

10 01

10 10

10 11

11 00

11 01

11 10

11 11

Memory Cache

Index Tag Block Data

00 ??

01 ??

10

11 ??

Here 𝐵 = 4 B
and 𝐶/𝐵 = 4

CSE351, Winter 2018L17: Caches II

Associativity

❖ What if we could store data in any place in the cache?
▪ More complicated hardware = more power consumed, slower

❖ So we combine the two ideas:
▪ Each address maps to exactly one set

▪ Each set can store block in more than one way

18

0

1

2

3

4

5

6

7

0

1

2

3

Set

0

1

Set

1-way:

8 sets,

1 block each

2-way:

4 sets,

2 blocks each

4-way:

2 sets,

4 blocks each

0

Set

8-way:

1 set,

8 blocks

direct mapped fully associative

4

CSE351, Winter 2018L17: Caches II

Cache Organization (3)

❖ Associativity (𝐸): # of ways for each set

▪ Such a cache is called an “𝐸-way set associative cache”

▪ We now index into cache sets, of which there are 𝐶/𝐵/𝐸

▪ Use lowest log2 𝐶/𝐵/𝐸 = 𝒔 bits of block address
• Direct-mapped: 𝐸 = 1, so 𝒔 = log2 𝐶/𝐵 as we saw previously

• Fully associative: 𝐸 = 𝐶/𝐵, so 𝒔 = 0 bits

19

Decreasing associativity
Fully associative
(only one set)Direct mapped

(only one way)

Increasing associativity

Selects the setUsed for tag comparison Selects the byte from block

Tag (𝒕) Index (𝒔) Offset (𝒃)

CSE351, Winter 2018L17: Caches II

Example Placement

❖ Where would data from address 0x1833 be placed?

▪ Binary: 0b 0001 1000 0011 0011

20

𝒔 = ?

block size: 16 B
capacity: 8 blocks
address: 16 bits

Set Tag Data
0
1
2
3
4
5
6
7

Direct-mapped

Set Tag Data

0

1

2

3

Set Tag Data

0

1

2-way set associative 4-way set associative

Tag (𝒕) Offset (𝒃)𝒎-bit address: Index (𝒔)

𝒔 = log2 𝐶/𝐵/𝐸 𝒃 = log2 𝐵𝒕 = 𝒎–𝒔–𝒃

𝒔 = ? 𝒔 = ?

CSE351, Winter 2018L17: Caches II

Block Replacement

❖ Any empty block in the correct set may be used to store block

❖ If there are no empty blocks, which one should we replace?
▪ No choice for direct-mapped caches

▪ Caches typically use something close to least recently used (LRU)
(hardware usually implements “not most recently used”)

21

Set Tag Data
0
1
2
3
4
5
6
7

Direct-mapped

Set Tag Data

0

1

2

3

Set Tag Data

0

1

2-way set associative 4-way set associative

CSE351, Winter 2018L17: Caches II

General Cache Organization (𝑆, 𝐸, 𝐵)

22

𝐸 = blocks/lines per set

𝑆 = # sets
= 2𝒔

set

“line” (block plus
management bits)

0 1 2 B-1TagV

valid bit
𝐵 = bytes per block

Cache size:
𝐶 = 𝐵 × 𝐸 × 𝑆 data bytes
(doesn’t include V or Tag)

CSE351, Winter 2018L17: Caches II

Notation Review

❖ We just introduced a lot of new variable names!

▪ Please be mindful of block size notation when you look at
past exam questions or are watching videos

23

Variable This Quarter Formulas

Block size 𝐵

𝑀 = 2𝑚 ↔𝑚 = log2𝑀
𝑆 = 2𝒔↔ 𝒔 = log2 𝑆

𝐵 = 2𝒃↔ 𝒃 = log2𝐵

𝐶 = 𝐵 × 𝐸 × 𝑆
𝒔 = log2 𝐶/𝐵/𝐸
𝒎 = 𝒕 + 𝒔 + 𝒃

Cache size 𝐶

Associativity 𝐸

Number of Sets 𝑆

Address space 𝑀

Address width 𝒎

Tag field width 𝒕

Index field width 𝒔

Offset field width 𝒃

CSE351, Winter 2018L17: Caches II

Cache Read

24

0 1 2 B-1tagv

𝒕 bits 𝒔 bits 𝒃 bits

Address of byte in memory:

tag set
index

block
offset

data begins at this offset

1) Locate set
2) Check if any line in set

is valid and has
matching tag: hit

3) Locate data starting
at offset

valid bit

𝑆 = # sets
= 2𝒔

𝐸 = blocks/lines per set

𝐵 = bytes per block

5

CSE351, Winter 2018L17: Caches II

Example: Direct-Mapped Cache (𝐸 = 1)

25

Direct-mapped: One line per set
Block Size 𝐵 = 8 Bytes

𝒕 bits 0…01 100

Address of int:

0 1 2 7tagv 3 654

0 1 2 7tagv 3 654

0 1 2 7tagv 3 654

0 1 2 7tagv 3 654

find set

𝑆 = 2𝒔 sets

CSE351, Winter 2018L17: Caches II

Example: Direct-Mapped Cache (𝐸 = 1)

26

𝒕 bits 0…01 100

Address of int:

0 1 2 7tagv 3 654

match?: yes = hitvalid? +

block offset

Direct-mapped: One line per set
Block Size 𝐵 = 8 Bytes

CSE351, Winter 2018L17: Caches II

Example: Direct-Mapped Cache (𝐸 = 1)

27

𝒕 bits 0…01 100

Address of int:

0 1 2 7tagv 3 654

match?: yes = hitvalid? +

int (4 B) is here

block offset

No match? Then old line gets evicted and replaced

This is why we
want alignment!

Direct-mapped: One line per set
Block Size 𝐵 = 8 Bytes

CSE351, Winter 2018L17: Caches II

Example: Set-Associative Cache (𝐸 = 2)

28

𝒕 bits 0…01 100

Address of short int:

find set

0 1 2 7tagv 3 6540 1 2 7tagv 3 654

0 1 2 7tagv 3 6540 1 2 7tagv 3 654

0 1 2 7tagv 3 6540 1 2 7tagv 3 654

0 1 2 7tagv 3 6540 1 2 7tagv 3 654

2-way: Two lines per set
Block Size 𝐵 = 8 Bytes

CSE351, Winter 2018L17: Caches II

0 1 2 7tagv 3 6540 1 2 7tagv 3 654

Example: Set-Associative Cache (𝐸 = 2)

29

𝒕 bits 0…01 100
compare both

valid? + match: yes = hit

block offset

tag

2-way: Two lines per set
Block Size 𝐵 = 8 Bytes

Address of short int:

CSE351, Winter 2018L17: Caches II

0 1 2 7tagv 3 6540 1 2 7tagv 3 654

Example: Set-Associative Cache (𝐸 = 2)

30

𝒕 bits 0…01 100

valid? + match: yes = hit

block offset

short int (2 B) is here

No match?
• One line in set is selected for eviction and replacement
• Replacement policies: random, least recently used (LRU), …

compare both

Address of short int:
2-way: Two lines per set
Block Size 𝐵 = 8 Bytes

