YW UNIVERSITY of WASHINGTON

Caches |

CSE 351 Winter 2018

Instructor:
Mark Wyse

Teaching Assistants:

Kevin Bi

Parker DeWilde
Emily Furst
Sarah House
Waylon Huang

Vinny Palaniappan

HEARTBLEED MUST
BE THE \JORST WEB
SECURITY LAPSE EVER.

WORST 90 FAR.
GNE US TIME.

P

L16: Caches|

I MEAN, THIS BUG ISNT
Just B\RC)ICEII*.I"r ENCRYPTION.

IT LETS WEBSITE VISITORS
MAKE. A SERVER DISPENSE
RANDOM MEMORY (ONTENTS.

3

CSE351, Winter 2018

IT'S NOT JUST KEYS.
IT'S TRAFRC DATA.
EMAILS. PASOWORDS.
EROTIC FANACTION.

IS EVERYIHING
WM;SED?

WELL, THE ATTACK 15
UMITED TO DATR SORED
IN COMPUTER MEMORY.

50 PAPER IS SAFE.

AND CLAY TABLETS.
OUR IMAGINATIONS, Too. |

SEE, VELL BE FINE.

Iy

Alt text: | looked at some of the data dumps from vulnerable sites, and
it was ... bad. | saw emails, passwords, password hints. SSL keys and
session cookies. Important servers brimming with visitor IPs. Attack
ships on fire off the shoulder of Orion, c-beams glittering in the dark
near the Tannhauser Gate. | should probably patch OpenSSL.

http://xkcd.com/1353/

http://xkcd.com/1513/

YW UNIVERSITY of WASHINGTON L16: Caches!|

Administrative

+ Lab 3 due Friday (2/16)

+» Midterm grades released later today
" Mean: 69%
" Median: 71%
= StDev: 13%

= Regrade requests done on Gradescope and due Friday
(2/16)

CSE351, Winter 2018

YA UNIVERSITY of WASHINGTON L16: Caches!| CSE351, Winter 2018

Roadmap

C: Java: Memory & data
Integers & floats

car *c = malloc(sizeof (car)); Car c¢c = new Car();
c->miles = 100; c.setMiles (100) ; x86 assembly
c->gals = 17; c.setGals (17); Procedures & stacks
float mpg = get mpg(c); float mpg = Executables
free(c); c.getMPG () ; Arrays & structs
~ & Memory & caches
Assembly c_wfet_mpc_illz1] Processes
. pushqg srbp .
language: movq srsp, $rbp Virtual memory
- Memory allocation
popgq srbp Javavs. C
ret I
\ 4
Machine 0111010000011000
de: 100011010000010000000010
code: 1000100111000010
110000011111101000011111
Computer

system:

YW UNIVERSITY of WASHINGTON L16: Caches!| CSE351, Winter 2018

How does execution time grow with SIZE?

int array[SIZE];

int sum = 0O;
for (int i = 0; 1 < 200000; 1i++) {

for (int 7 = 0; j < SIZE; j++) {

sum += arrayl([]];

} Time |

Plot

SIZE

WA UNIVERSITY of WASHINGTON L16: Caches | CSE351, Winter 2018

Actual Data

45

40

35

30

25

Time

20

15

10

— 0 2000 4000 6000 8000 10000

SIZE

YW UNIVERSITY of WASHINGTON L16: Caches!|

Making memory accesses fast!

+» Cache basics

+ Principle of locality
+» Memory hierarchies
+ Cache organization

+» Program optimizations that consider caches

CSE351, Winter 2018

YW UNIVERSITY of WASHINGTON L16: Caches!| CSE351, Winter 2018

Processor-Memory Gap

1989 first Intel CPU with cache on chip
1998 Pentium Ill has two cache levels on chip

UProc
10000 A 55%/year
(2X/1.5yr)
g 1000)
= Processor-Memory
€ 100 Performance Gap
£ “Moore’s Law” (grows 50%/year)
Q
& 10
R DRAM
1 B I] I [| 7%/year
S » HO O L o H L N X |(2X/10yrs)

YW UNIVERSITY of WASHINGTON

L16: Caches|

CSE351, Winter 2018

Problem: Processor-Memory Bottleneck

Processor performance
doubled about
every 18 months

CPU | Reg

Core 2 Duo:
Can process at least
256 Bytes/cycle

Bus latency / bandwidth
evolved much slower

|

Core 2 Duo:

Bandwidth

2 Bytes/cycle

Latency

100-200 cycles (30-60ns)

Main
Memory

Problem: lots of waiting on memory

cycle: single machine step (fixed-time)

YW UNIVERSITY of WASHINGTON

L16: Caches|

CSE351, Winter 2018

Problem: Processor-Memory Bottleneck

Processor performance
doubled about
every 18 months

CPU | Reg Cache

Core 2 Duo:
Can process at least
256 Bytes/cycle

Bus latency / bandwidth
evolved much slower

|

Core 2 Duo:

Bandwidth

2 Bytes/cycle

Latency

100-200 cycles (30-60ns)

Solution: caches

cycle: single machine step (fixed-time)

Main
Memory

YW UNIVERSITY of WASHINGTON L16: Caches!| CSE351, Winter 2018

Cache @

« Pronunciation: “cash”
= \We abbreviate this as “S”

+» English: A hidden storage space
for provisions, weapons, and/or treasures

+» Computer: Memory with short access time used for
the storage of frequently or recently used instructions
(i-cache/IS) or data (d-cache/DS)

= More generally: Used to optimize data transfers between
any system elements with different characteristics (network
interface cache, 1/0O cache, etc.)

10

YW UNIVERSITY of WASHINGTON L16: Caches| CSE351, Winter 2018

General Cache Mechanics

* Smaller, faster, more expensive

Cache 7 9 14 3 memory
* Caches a subset of the blocks

Data is copied in block-sized
transfer units

Memory 0 1 2 3 * Larger, slower, cheaper memory.
* Viewed as partitioned into “blocks”
4 5 6 7
8 9 10 11
12 13 14 15

11

YW UNIVERSITY of WASHINGTON

L16: Caches |

General Cache Concepts: Hit

Cache

Memory

Request: 14
7 9 14 3
0 1 2 3
4 5 6 7
8 9 10 11
12 13 14 15

CSE351, Winter 2018

Data in block b is needed

Block b is in cache:
Hit!

Data is returned to CPU

12

YW UNIVERSITY of WASHINGTON

L16: Caches |

CSE351, Winter 2018

General Cache Concepts: Miss

Cache

Memory

Request: 12

7 12 14 3
12 Request: 12

0 1 2 3

4 5 6 7
8 9 10 11
12 13 14 15

Data in block b is needed

Block b is not in cache:
Miss!

Block b is fetched from
memory

Block b is stored in cache

* Placement policy:
determines where b goes

* Replacement policy:
determines which block
gets evicted (victim)

Data is returned to CPU
13

YW UNIVERSITY of WASHINGTON L16: Caches!| CSE351, Winter 2018

Why Caches Work

» Locality: Programs tend to use data and instructions
with addresses near or equal to those they have used

recently
\/

Temporal locality: block

= Recently referenced items are likely
to be referenced again in the near future

Spatial locality: ¢

" |tems with nearby addresses tend
to be referenced close together in time

/
000

/
000

block

How do caches take advantage of this?

/
000

14

YW UNIVERSITY of WASHINGTON L16: Caches!| CSE351, Winter 2018

Example: Any Locality?

sum = 0;
for (1 =
{

sum += alf[i];

}

return sum;

O0; 1 < n; 1++)

<+ Data:
" Temporal: sumreferenced in each iteration

= Spatial: array a [] accessed in stride-1 pattern

+ Instructions:
" Temporal: cycle through loop repeatedly

= Spatial: reference instructions in sequence

15

YW UNIVERSITY of WASHINGTON L16: Caches!| CSE351, Winter 2018

Locality Example #1

int sum array rows (int a[M] [N])
{
int i, j, sum = 0;
for (i = 0; i < M; i++)
for (j = 0; j < N; J++)
sum += alil[j];
return sum;
}

16

YW UNIVERSITY of WASHINGTON L16: Caches!| CSE351, Winter 2018

Locality Example #1

int sum array rows (int a[M] [N]) M=3,N=4

{ a[o][0]||al[o][1]]||al0][2]||alO][3]
int i, j, sum = 0;

a[1][0]||al1][1]||all](2]||al1l][3]

for (1 = 0; 1 < M; 1i++)
for (j = 0; J < N; j++) a[2][0] |[al2][1]]]al2][2] | |al2][3]

sum += alil[j];

Access Pattern: 1)| a[0] [0]

RS S stride = ? 2)| at0111]

: 3)| al0] [2]
4)1 al0] [3]

Layout in Memory 5)| alll1[0]
a a a a a a a a a a a a 6) a[l] [1]
to1|ro1|rorfrorfrrrfrrfrr|{rrrfr21|r21|r21|r21 Ny altllfz]
[01{r21{r21|c31fro1|rr1fr21fr3rfrorfrrr|r21|r3; 8)| all] [3]
| | | 9) al211(0]
76 92 108 10)l a[2][1]
11)| al2] [2]

Note: 76 is just one possible starting address of array a 12) al2] [3]

17

YW UNIVERSITY of WASHINGTON L16: Caches!| CSE351, Winter 2018

Locality Example #2

int sum array cols(int a[M] [N])
{
int i, j, sum = 0;
for (j = 0; J < N; Jj++)
for (1 = 0; 1 < M; 1i++)
sum += alil[j];
return sum;
}

18

YW UNIVERSITY of WASHINGTON

Locality Example #2

L16: Caches| CSE351, Winter 2018

int sum array cols(int a[M] [N])
{
int i, j, sum = 0;
for (j = 0; J < N; Jj++)
for (1 = 0; i < M;
sum += alil[j];
return sum;
}

M = 3, N=4

Access Pattern:
stride =7?

Layout in Memory

=

—_ e P B e B B e P P B
Lo B B B B B B B B B B B B o B B o B B B B B B o B B e |

WIWITWININDINIRPIRPIR]IO|O] O

NIFRJIOINIRIOINDIFRIOINIR]O

N P O W 0 J o U b w N
AU [NOORN (ST INOPR ROPRY VRN (TR RGN INCPRY OVRY OIRN QY

[

YW UNIVERSITY of WASHINGTON

L16: Caches|

Locality Example #3

int sum array 3D(int a[M] [N][L])
{

k, sum 0;

int i, 7, =

(1 = 0; 1 < N; 1i++)

for (J = 0;] < L; 3++)
for (k = 0;

for

return sum;

k < M; k++)
sum += alk][i]1[3];

a[2][0][0]

a[2][0][1]

a[2][0][2]

a[2]1[0][3]

a[11[0][0]

Ha[11[0][1]

a[1]1[0][21Ha[11[0]1[3]

a[0][0][0]

Hal01[0][1]

Inl

a[0][0][2]

Inl

1
|

a[0][0][3]

I4-II_IO-IJ-IIJ-][3]

z1= | [3]

[Es e

IVIHTS] LT L

1
|

ESINE=IESIEs

a[0][1][0]

HalOl[1][1]

a[0][1][2]

a[0][1][3]

1< 11 IO-lJ-JIL][B]

z1z (3]

4] L] &

IVIIIA] L&

ILI TS L&

CSE351, Winter 2018

+» What is wrong

with this code?

+ How can it be

fixed?

€«<—m-= 2

€«<—m=1

| — [nl

| — [nl

a[0][2][0]

|alol(2][1]

a[0][2][2]

al0][2][3]

«<—m=0

20

YW UNIVERSITY of WASHINGTON L16: Caches!| CSE351, Winter 2018

Locality Example #3

int sum array 3D(int a[M][N] [L]) « What is wrong
{ *

int i, j, k, sum = 0; with this code?

for (i = 0; i < N; i++)

for (j = 0; j < L; Jj++)
for (k = 0; k < M; k++) | <« How can it be
sum += alk][1]1[J]; .
fixed?

return sum;

}

Layout in Memory (M =?,N =3, L=4)

a a
(0] [o]} [o] | [o]([o]| (o]} (o] [o]|[0]}[0]][O] (O] (1]} [1]{ (]| 2]} 1] | (2] (2] (2]} 1]{ 2] {[2]]IL]
(o] {[OT} [0} | (o] | (2] (21) (11| (2] (2]} (2]} (2] (2] [O1 | [O]{ (O] | [OF| (1] | (1] {[2]| (1]} (2] (2] |[2]][2]
(o] [(a1 (21| (31| (o] | (21] (2] | (3 [OT | (1) (2] { (3T [O1] [11{ (21| 31| (O] [1]{[2]| (31| (O] [2]{[2]][3]

1 1 | 1 1 | |

76 92 108 124 140 156 172

21

YW UNIVERSITY of WASHINGTON L16: Caches!| CSE351, Winter 2018

Cache Performance Metrics

+» Huge difference between a cache hit and a cache miss

" Could be 100x speed difference between accessing cache
and main memory (measured in clock cycles)

%+ Miss Rate (MR)

" Fraction of memory references not found in cache (misses /
accesses) = 1 - Hit Rate

% Hit Time (HT)

®" Time to deliver a block in the cache to the processor

« Includes time to determine whether the block is in the cache

» Miss Penalty (MP)

= Additional time required because of a miss

22

YW UNIVERSITY of WASHINGTON L16: Caches!| CSE351, Winter 2018

Cache Performance

+» Two things hurt the performance of a cache:
= Miss rate and miss penalty

+ Average Memory Access Time (AMAT): average time
to access memory considering both hits and misses
AMAT = Hit time + Miss rate x Miss penalty
(abbreviated AMAT = HT + MR x MP)

% 99% hit rate twice as good as 97% hit rate!
= Assume HT of 1 clock cycle and MP of 100 clock cycles
"= 97%: AMAT =
" 99%: AMAT =

23

YW UNIVERSITY of WASHINGTON

L16: Caches|

CSE351, Winter 2018

Peer Instruction Question

+ Processor specs: 200 ps clock, MP of 50 clock cycles,
MR of 0.02 misses/instruction, and HT of 1 clock cycle

AMAT = HT + MR*MP =

«» Which improvement would be best?
A.

B. Miss penalty of 40 clock cycles

C. MR of 0.015 misses/instruction

24

YW UNIVERSITY of WASHINGTON L16: Caches!| CSE351, Winter 2018

Can we have more than one cache?

+» Why would we want to do that?
= Avoid going to memory!
+ Typical performance numbers:
" Miss Rate
« L1 MR =3-10%
- L2 MR = Quite small (e.g. < 1%), depending on parameters, etc.
" Hit Time
« L1 HT =4 clock cycles
« L2 HT =10 clock cycles

= Miss Penalty
- P =50-200 cycles for missing in L2 & going to main memory
- Trend: increasing!

25

YW UNIVERSITY of WASHINGTON L16: Caches!| CSE351, Winter 2018

Memory Hierarchies

+» Some fundamental and enduring properties of
hardware and software systems:

= Faster storage technologies almost always cost more per
byte and have lower capacity

" The gaps between memory technology speeds are widening
 True for: registers <> cache, cache <> DRAM, DRAM <> disk, etc.

= Well-written programs tend to exhibit good locality

% These properties complement each other beautifully

" They suggest an approach for organizing memory and
storage systems known as a memory hierarchy

26

YW UNIVERSITY of WASHINGTON

L16: Caches|

CSE351, Winter 2018

An Example Memory Hierarchy

A

Smaller,
faster,
costlier
per byte

Larger, 100 ns

slower,

<lns
registers

1ns on-chip L1
cache (SRAM)

5-10 ns Off'Chip LZ
cache (SRAM)

cheaper ;154000 ns
per byte

10,000,000 ns
(10 ms)

main memory
(DRAM)
SSD
local secondary storage
Disk (local disks)

1-150 ms

remote secondary storage
(distributed file systems, web servers)

27

YW UNIVERSITY of WASHINGTON L16: Caches!| CSE351, Winter 2018

Summary

+» Memory Hierarchy

= Successively higher levels contain “most used” data from
lower levels

= Exploits temporal and spatial locality

= Caches are intermediate storage levels used to optimize

data transfers between any system elements with different
characteristics

+ Cache Performance
" |deal case: found in cache (hit)
" Bad case: not found in cache (miss), search in next level

= Average Memory Access Time (AMAT) = HT + MR x MP
- Hurt by Miss Rate and Miss Penalty

28

YW UNIVERSITY of WASHINGTON

L16: Caches|

Aside: Units and Prefixes

SIZE PREFIXES (10* for Disk, Communication; 2* for Memory)

- |EC prefixes are unambiguously base 2

» Here focusing on large numbers (exponents > 0)
- Note that 103 = 210

» Sl prefixes are ambiguous if base 10 or 2

SI Size Prefix Symbol | IEC Size Prefix Symbol
103 Kilo- K 210 Kibi- Ki
10° Mega- M 220 Mebi- Mi
10° Giga- G 230 Gibi- Gi
10> Tera- T 240 Tebi- Ti
1015 Peta- P 250 Pebi- Pi
1018 Exa- E 299 Exbi- Ei

1021 Zetta- Z 270 Zebi- Zi
10%4 Yotta- Y 280 Yobi- Yi

CSE351, Winter 2018

29

