Caches |
CSE 351 Winter 2018

Instructor:

L16: Caches |

Mark Wyse

Teaching Assistants:
Kevin Bi

Parker DeWilde
Emily Furst

Sarah House

HEARTBLEED MUST | T MEAN THIS BUG BNT | ITS NOT J0ST KEYS. || WELL, THE ATACK IS
BE THE \JORST WEB TRAFFIC. DAIR.

Jlﬂm‘mﬂ'ﬂl s

SECURITY LAPSE BIER. BT R | IS PRESLORTS. HEoRY.
Lok S0k | PHE A SRR DEPBRE | B PAFRCAON. 50 PRPER 15 SHPE.
GVE USTME. | RANDOr MEMORY CONTENTS. 5 EHRYIING PelD CLA TRBLETS.
CorPRorisED? | | R PRGATDNG 0. |
SEE, LELL BE FRE.

Tl

Waylon Huang
Vinny Palaniappan

Alt text: | looked at some of the data dumps from vulnerable sites, and
it was ... bad. | saw emails, passwords, password hints. SSL keys and
session cookies. Important servers brimming with visitor IPs. Attack
ships on fire off the shoulder of Orion, c-beams glittering in the dark
near the Tannhiuser Gate. | should probably patch OpenSSL.

http://xked.com/1353/

Roadmap
C:

Java:

c->miles = 100;
c->gals = 17;

free(c);

car *c = malloc(sizeof(ecar)); | |Car c = new Car();

float mpg = get_mpg(c);

c.setMiles (100);

c.setGals(17);

float mpg =
c.getMPG() ;

s — Memory & caches
Assembly get_mpg:
. pushq Srbp
language: movg srsp, %rbp
popq Srbp
ret 1
v
Machine 0111010000011000 \/ R
100011010000010000000010 {
code: 1000100111000010 /N
110000011111101000011111 . o
Computer

system:

Administrative

« Lab 3 due Friday (2/16)

« Midterm grades released later today
= Mean: 69%
= Median: 71%
= StDev: 13%

= Regrade requests done on Gradescope and due Friday
(2/16)

L16: Caches |

45
40 /
35
30
° / Data set > cache size
HE
" /
20 /
15 /
10
5
Data set < cache size
— 1 o 2000 4000 6000 8000 10000

SIZE

How does execution time grow with SIZE?

int array([SIZE];

int sum = 0;
for (int 1 = 0; 1 < 200000; i++) {
for (int § = 0; j < SIZE; j++) {

sum += arrayl[]j]l;

} Time

Plot

SIZE

Making memory accesses fast!

+ Cache basics

« Principle of locality

« Memory hierarchies

+ Cache organization

+ Program optimizations that consider caches

http://xkcd.com/1513/

L16: Caches |

Processor-Memory Gap

1989 first Intel CPU with cache on chip
1998 Pentium Il has two cache levels on chip

uProc
10000 ol 55%/year
(2X/1.5yr)
@ 1000
£ Processor-Memory
£ 100 Performance Gap
..g “Moore’s LaM (grows 50%/year)
& 10
DRAM
(2X/10yrs)

S > © > v N > N >
N3 N} N3} N} > > > N N
N O I G\ S

Year

L16: Caches |

Problem: Processor-Memory Bottleneck

Processor performance

doubled about N
every 18 months Bus latency / bandwidth

evolved much slower
Main
Memory

Core 2 Duo: Core 2 Duo:
Can process at least Bandwidth
256 Bytes/cycle 2 Bytes/cycle
Latency
100-200 cycles (30-60ns)

Solution: caches

cycle: single machine step (fixed-time))

Problem: Processor-Memory Bottleneck

Processor performance

doubled about)
every 18 months Bus latency / bandwidth

evolved much slower
Main
Memory

Core 2 Duo: Core 2 Duo:
Can process at least Bandwidth
256 Bytes/cycle 2 Bytes/cycle
Latency
100-200 cycles (30-60ns)

Problem: lots of waiting on memory

cycle: single machine step (fixed-time)

General Cache Mechanics

Smaller, faster, more expensive

Cache |[7 J[9 |[14 J[3 J[memoy
Caches a subset of the blocks

Data is copied in block-sized
transfer units

Memory | 0 ” 1 ” 2 ” 3 | Larger, slower, cheaper memory.
| 2 ” S ” 3 ” 7 | + Viewed as partitioned into “blocks”
8 9 10 11
12 13 14 15
®eccccccccccccccce

« Pronunciation: “cash”
= We abbreviate this as “$”

« English: A hidden storage space
for provisions, weapons, and/or treasures

« Computer: Memory with short access time used for
the storage of frequently or recently used instructions
(i-cache/I$) or data (d-cache/DS)
= More generally: Used to optimize data transfers between

any system elements with different characteristics (network
interface cache, I/O cache, etc.)

General Cache Concepts: Hit

Request: 14 Data in block b is needed
Block b is in cache:
Cache |[7 J[o J[aa][s]|
Data is returned to CPU
Memory ([0 J[1 J[2 J[3]
[a][s [e [7]
[8 [o][10 [11]
[22 J[13][2a][15]
eecccecscccccccccee

General Cache Concepts: Miss

Request: 12

Cache |15]

Request: 12

Memory [[o J[1 [2 J[s]
[a s 1 e [7]
8 9 10 11
2]]2][5]

Data in block b is needed

Block b is not in cache:
Miss!

Block b is fetched from
memory

Block b is stored in cache

* Placement policy:
determines where b goes

* Replacement policy:
determines which block
gets evicted (victim)

Data is returned to CPU

Example: Any Locality?

sum = 0;
for (i =
{

sum += a[i];
}

return sum;

0; i < n; i++)

« Data:

= Temporal: sumreferenced in each iteration
= Spatial: array a [] accessed in stride-1 pattern

« Instructions:

= Temporal: cycle through loop repeatedly
= Spatial: reference instructions in sequence

Locality Example #1

int sum_array_rows (int a[M] [N])
{

int i, j, sum = 0;
for (i = 0; i < M; i++)
for (j = 0; j < N; j++)

sum += a[i][j];

return sum;

Layout in Memory

alalalalalala ala a

(01 CO3([OT) [OT| (1Y ((1][(2]|[2]fC2]|[2)|[2]|[2]

[01] (11| [2])(31fC01((1][(2]|[3]fC(0]|[1)|[2]][3]
76 92 108

Note: 76 is just one possible starting address of array a

Access Pattern:
stride="?

)| ato1[0]1
)| ato111]
)| ato12]1
)| alo] (3]
)| al11[0]
)| alll[1]
)| alllr2]
)
)
)
)
)

all1(3]
af2110]
al2][1])
al2][2]
af2]13]

Why Caches Work

recently

« Temporal locality:

+ Spatial locality:

+ Locality: Programs tend to use data and instructions
with addresses near or equal to those they have used

= Recently referenced items are likely
to be referenced again in the near future

= |tems with nearby addresses tend
to be referenced close together in time

« How do caches take advantage of this?

WV

2

Locality Example #1

int sum_array rows (int a[M] [N])
{

int i, j, sum = 0;
for (i = 0; i < M; i++4)
for (j = 0; j < N; j++)

sum += a[il[j];

return sum;

Locality Example #2

int sum_array cols (int a[M][N])
{

int i, j, sum = 0;

for (j = 0; j < N; j++)
for (i 0; 1 < M; i++)
sum += a[i] [j];

return sum;

CSE35L, Win

Locality Example #2

int sum_array_cols(int a[M] [N])
{

int i, j, sum = 0;

for (j = 0; j < N; j++)
for (i = 0; i < M; i++4)
sum += al[i][§];

Access Pattern: 1) a[0] [0]

return sum; stride=7? 2)[all][0]

3)[al2] (0]

af0][1]

alll(1]

4
Layout in Memory 5
6
7

S

alala a ala
o1 ro1frorfcorfr1afreafraifraifr21fr21f2 afo1(2)

)
)
al2]111]
)
)

[0][[11{[2]][3]](01[[1]][2]][3]fI0]|[1]]|[2]|[3] 8) all][2]

9) al2][2]

al0][3]

)
11| al11([3]
Lal2113]

Locality Example #3

int sum_array 3D(int a[M] [N] [L]) . What is wrong
(&

with this code?

int i, j, k, sum = 0;

for (i = 0; 1 < N; i++)
for (j = 0; J < L; j++)
for (k = 0; k < M; kt++)
sum += a[k][i][]j];

+ How can it be
fixed?

return sum;

}
Layout in Memory (M=?,N=3,L=4)

alalaflalalalalalafla|alalafalafa]|a|a alalala
[0 {01 | (o] | [01 | (o] | (o] [(o] | (o] | [0 [(o] | (o [(o) | (11| (] (x| (2] [(2] f (11| (2] [(1] | ()] (2] | (2] 2]
(01 (10) | (01} 07 | (1| (11 (1] | (11} (2] (2] | (2] 2] | (01| O] [{O) | (0] (1] f (11| (2] (1) | (2]] (2] | (2]} (2]
[0 {21 (21 | (21| (o) | (11| 2] | (]| tod | (11| 21 | (31 f o1 | (21 { 21 | (31 | o} | (21 | 21 | (3] | o} | (21 | 2] | (3]

76 92 108 124 140 156 172

Locality Example #3

int sum_array 3D(int a([M] [N] [L]) » What is wrong
(%

with this code?

int i, j, k, sum = 0;

for (i = 0; 1 < N; i++4)
for (j = 0; j < L; j++)
for (k = 0; k < M; k++)
sum += alk][i]1[3];

« How can it be
fixed?

return sum;

ar21o)io1llaf21101111l laf21101(21l [a[2110](3]
a[11[0](01Ha[11[0][11Ha[11[0](21Ha[11[0](3] 1G]
oooH 001F oozF oJ[01(3

a[0][0][0]ralo][o][1]jal0][0][2][fal0][0](3]) 5

[eooifatoninifatoi iz faionEE=IR] <—m = 2

TET Tz [TOTar ez e Trrarrz](3] m=1

[orziolfjapnzinjawizizljaolR)EF=—m = o

Cache Performance

« Two things hurt the performance of a cache:
= Miss rate and miss penalty

. Average Memory Access Time (AMAT): average time
to access memory considering both hits and misses
AMAT = Hit time + Miss rate x Miss penalty
(abbreviated AMAT = HT + MR x MP)

99% hit rate twice as good as 97% hit rate!

= Assume HT of 1 clock cycle and MP of 100 clock cycles
= 97%: AMAT =

= 99%: AMAT =

Cache Performance Metrics

« Huge difference between a cache hit and a cache miss

® Could be 100x speed difference between accessing cache
and main memory (measured in clock cycles)

« Miss Rate (MR)

= Fraction of memory references not found in cache (misses /
accesses) = 1 - Hit Rate

=+ Hit Time (HT)
= Time to deliver a block in the cache to the processor
+ Includes time to determine whether the block is in the cache

« Miss Penalty (MP)
= Additional time required because of a miss

Peer Instruction Question

= Processor specs: 200 ps clock, MP of 50 clock cycles,
MR of 0.02 misses/instruction, and HT of 1 clock cycle

AMAT = HT + MR*MP =

« Which improvement would be best?
A.

B. Miss penalty of 40 clock cycles

C. MR of 0.015 misses/instruction

L16: Caches |

Can we have more than one cache?

« Why would we want to do that?
= Avoid going to memory!
« Typical performance numbers:
= Miss Rate
+ L1 MR =3-10%
« L2 MR = Quite small (e.g. < 1%), depending on parameters, etc.
= Hit Time
« L1 HT =4 clock cycles
« L2 HT = 10 clock cycles
= Miss Penalty
+ P =50-200 cycles for missing in L2 & going to main memory
« Trend: increasing!

Smaller,
faster,

costlier
per byte

off-chip L2
cache (SRAM)

Larger, 100 ns main memory
slower, (DRAM)
cheaper ;54 000,)
per byte local secondary storage
10,000,000 s, Disk (local disks)
(10ms)

1-150 ms remote secondary storage
(distributed file systems, web servers)

5-10ns

Aside: Units and Prefixes

« Here focusing on large numbers (exponents > 0)
« Note that 103 = 210

« Sl prefixes are ambiguous if base 10 or 2

« |EC prefixes are unambiguously base 2

SIZE PREFIXES (10* for Disk, Communication; 2* for Memory)

SI Size Prefix | Symbol | IECSize | Prefix | Symbol
10° Kilo- K 23 Kibi- Ki
10° Mega- M 220 Mebi- Mi
10° Giga- G 280 Gibi- Gi
1012 Tera- T 240 Tebi- Ti
1015 Peta- P 250 Pebi- Pi
101% Exa- E FL Exbi- Ei
1021 Zetta- Z 270 Zebi- Zi
10%% Yotta- Y Pl Yobi- Vi

Memory Hierarchies

« Some fundamental and enduring properties of
hardware and software systems:

= Faster storage technologies almost always cost more per
byte and have lower capacity

= The gaps between memory technology speeds are widening
« True for: registers <> cache, cache <> DRAM, DRAM < disk, etc.
= Well-written programs tend to exhibit good locality

« These properties complement each other beautifully

= They suggest an approach for organizing memory and
storage systems known as a memory hierarchy

Summary

« Memory Hierarchy

= Successively higher levels contain “most used” data from
lower levels

= Exploits temporal and spatial locality
= Caches are intermediate storage levels used to optimize
data transfers between any system elements with different
characteristics
+ Cache Performance
= |deal case: foundin cache (hit)
= Bad case: notfound in cache (miss), search in next level

= Average Memory Access Time (AMAT) = HT + MR x MP
« Hurt by Miss Rate and Miss Penalty

