L14: Stnets and Algament

Structs and Alignment
CSE 351 Winter 2018

Instructor:
Mark Wyse

Teaching Assistants:
Kevin Bi, Parker DeWilde, Emily Furst,
Sarah House, Waylon Huang, Vinny Palaniappan

RoB!
v
YoU USE Unix!

COME GICK!

/s
T

i T 50 SoRRY.

e

http://xked.com/1168/

L14: Structs and Algnment , Winer 2018

Administrivia

+ Mid-quarter survey due by Thursday at 11:59 pm
« Homework 3 due Friday (2/9)

=+ Lab 3 released today!
= Due next Friday (2/16)

Midterm check-in
= Difficulty?
= Length?

Roadmap

C Java:

>.setMiles (100) ;
c.setGals(17);

c->miles = 100;
c->gals = 17;

car *c = malloc(sizeof (car)); Car ¢ = new Car();

float mpg = get_mpg(c); float mpg =
free(c); c.getMPG () ; Arrays & structs
Assembly get_mpg:
. pushq &rbp
language: movq %rsp, %rbp
POPq $rbp
ret
!
¥
Machine 0111010000011000
de: 100011010000010000000010
code: 1000100111000010
110000011111101000011111
Computer
system:

CSE35L, Winter 2018

Peer Instruction Question

« Which of the following statements is FALSE?

int sea[4](5]; |9(/8|1|/9/5|/9|8(1|0/5|9/8/1/0|3|9/8|1|1/5

76 96 116 136 156

o~}

. sea[1l] [1] makes two memory accesses

(@]

. sea[2] [1] will always be a higher address
thansea[1] [2]

. sea[2] iscalculated using only 1ea
E. We'relost...

=)

L14: Stucts and Aligoment

Data Structures in Assembly

« Arrays
= One-dimensional
= Multi-dimensional (nested)
= Multi-level
« Structs
= Alignment

« Unions

Structs in C

« Way of defining compound data types
= A structured group of variables, possibly including other structs

typedef struct {
int lengthInSeconds;
int yearRecorded;

} Song;

typedef struct {

int lengthInSeconds;
int yearRecorded;

} Song:
Song songl;

song1

songl.lengthInSeconds = 213; LengthlnSeconds: 213
songl.yearRecorded = 1994; yearRecorded: 1994
Song song2; sang2
lengthInsecands: 248
song2.lengthInSeconds = 248; yearRecorded: 1388

song2.yearRecorded = 1988;

http://xkcd.com/1168/

L14: Stnets and Algament

Struct Definitions

+« Structure definition: e D
= Does NOT declare a variable /* fields */
= Variable type is “struct name” biem

pointer L Easy to forget

= " |
‘struct name namel, *pn, name_ar[3]; semicolon!

array
« Joint struct definition and typedef

= Don’t need to give struct a name in this case

struct nm { typedef struct {
/* fields */ ' /* fields */

}i } name;

typedef struct nm name; name nl;

name nl;

Accessing Structure Members

« Given a struct instance, access

member using the . operator: |struct rec {

int af[4];

long i;

struct rec *next;

struct rec rl;
rl.i = val;

« Given a pointer to a struct:
struct rec *r;
r = &rl; // or malloc space for r to point to
We have two options:
- Use * and . operators: (*r).i = val;
« Use -> operator for short: r->i = val;

« In assembly: register holds address of the first byte
= Access members with offsets

Scope of Struct Definition

« Why is placement of struct definition important?
= What actually happens when you declare a variable?
« Creating space for it somewhere!

= Without definition, program doesn’t know how much space

struct data {|<— Size= bytes | struct rec {
int ar[4]; int al4];
long d; long i;
Yi struct rec* next;
Size = bytes—— | };

« Almost always define structs in global scope near the
top of your C file
= Struct definitions follow normal rules of scope

L1 Stucts and Algament

Structure Representation

struct rec { r
int a(4];
long i;
struct rec *next; a | i | next |
*r;
b S 0 16 24 32

+ Characteristics
= Contiguously-allocated region of memory
= Refer to members within structure by names
= Members may be of different types

class Record ({ }

Java Side'nOte Record x = new g{ééord();

« Aninstance of a class is like a pointer to a struct
containing the fields
= (Ignoring methods and subclassing for now)
® SolJava’s x.f islikeC's x->f or (*x).f

In Java, almost everything is a pointer (“reference”) to
an object

= Cannot declare variables or fields that are structs or arrays

= Always a pointer to a struct or array

= So every Java variable or field is < 8 bytes (but can point to
lots of data)

Structure Representation

struct rec { r
int a[4];
long i;
struct rec *next; a | i | next |
*y;
b O 0 16 24 32

« Structure represented as block of memory

= Big enough to hold all of the fields
« Fields ordered according to declaration order
= Even if another ordering would be more compact

+ Compiler determines overall size + positions of fields

= Machine-level program has no understanding of the
structures in the source code

L14: Stnets and Algament

Accessing a Structure Member

struct rec { r r->1

int a[4];

long i;

struct rec *next; a i | nextl
} *ri 0 16 24 32
. Compiler knows the long get i (struct rec *r)

{
offset of each member return r->i;

within a struct ’

= Compute as

* (r+offset) # di, lex ir
movqg 16 (%rdi), S%rax
ret

+ Referring to absolute
offset, so no pointer
arithmetic

Exercise: Pointer to Structure Member

struct rec { r
int a[4];
long i;
struct rec *next; a | i | next |

*rs
b = 0 16 24 32

long* addr of i(struct rec *r) # r in %rdi
{

return & (r->i);
} ret

,5rax

struct rec** addr of next (struct rec *r) # r in %rdi
{

return &(r->next);
} ret

,%rax

Generating Pointer to Array Element

struct rec { r r+4*index
int af4];
long i;
struct rec *next; a | i | next |
} Gep 0 16 24 32
+ Generating Pointer to int* find addr of array elem
Array Element (struct rec *r, long index)
{
= Offset of each structure return &r->alindex];
member determined at ! .
compile time &(r->alindex])
= Compute as:
s # 1 , ex :
r+4*index leaq (%rdi,%rsi,4), %rax
ret

Review: Memory Alignment in x86-64

« For good memory system performance, Intel
recommends data be aligned
®" However the x86-64 hardware will work correctly regardless
of alignment of data
= Aligned means that any primitive object of K bytes
must have an address that is a multiple of K

« Aligned addresses for data types:

K | Type Addresses

1 char No restrictions

2 short Lowest bit must be zero: ...0,
4 int, float Lowest 2 bits zero: ...00,

8 long, double, * Lowest3 bits zero: ..000,

16 long double Lowest 4 bits zero: ...0000,

L1 Stucts and Algament

Alignment Principles

« Aligned Data
® Primitive data type requires K bytes
= Address must be multiple of K
= Required on some machines; advised on x86-64

« Motivation for Aligning Data
= Memory accessed by (aligned) chunks of 4 or 8 bytes
(system dependent)
« Inefficient to load or store value that spans quad word boundaries
« Virtual memory trickier when value spans 2 pages (more on this later)

Structures & Alignment

+ Unaligned Data st G §
char c;
[c] iror T ara1] v int i[2];
p p+l p+5 p+9 p+17 double v;
} *p;

« Aligned Data

= Primitive data type requires K bytes

= Address must be multiple of K

[c] [ito1 [ity] I v |

p+0 Ra p+8 p+16 p+24
] Multipl&{ Multiple of 8]

Multiple of 8 internal fragmentation Multiple of 8

L14: Stnets and Algament

CSE3S1, Winter 2018

Satisfying Alignment with Structures (1)

+ Within structure: struct S1 {
. . . char c;
® Must satisfy each element’s alignment requirement int i[2];
+ Overall structure placement double v;
. . } *p;
® Each structure has alignment requirement Ky ax 12

+ Kmax = Largest alignment of any element
« Counts array elements individually as elements
= Address of structure & structure length must be multiples of K,
« Example:

® Kmax =8, due to double element

[c] [ito1 [sty] | v |
p+0 %4 p+8 p+16 p+24
] Multmk{ Multiple of 8]

Multiple of 8 internal fragmentation Multiple of 8

L14: Structs and Algnment , Winer 2018

Satisfying Alignment with Structures (2)

« Can find offset of individual fields St:“szlsz {
. O e v;
usingoffsetof () int i(2]:
" Needto #include <stddef.h> char c;
= Example: offsetof (struct S2,c) returns 16 } *p;

« For largest alignment requirement Ky, ax,
overall structure size must be multiple of Kyjax

= Compiler will add padding at end of
structure to meet overall structure
alignment requirement

v i[0] ir1] <] |
p+0 p+8 p+16 p+24
external fragmentation Multiple of 8

Arrays of Structures
B3 1 struct S2 {
+ Overall structure length multiple of Kj;,4x P oo
« Satisfy alignment requirement i:‘ ir21;
. char c;
for every element in array } ar10];
[a10] [all] [al2] coe e
a+0 at24 a+48 a+72
v i[0] i1 [c]
at24 a+32 a+40 at+48
external fragmentation ”

EyT—
Accessing Array Elements
= Compute start of array element as: 12*index Stf:Ct s3 ¢
short i;
® sizeof (S3) = 12,including alignment padding float \17;
= Element 7 is at offset 8 within structure short j;
. } al10];
= Assembler gives offset a+8
[at0 [.. [atindex] [e
a+0 atl2 a+l2*index
[[v 151 |
a+l2*index
a+12*index+8
short get j(int index) rdi = index
{ leaq (%rdi,%rdi,2),%rax *index
return a[index].j; movzwl a+8(,%rax,4),%eax
}
23

Alignment of Structs

« Compiler will do the following:
= Maintains declared ordering of fields in struct

= Each field must be aligned within the struct

(may insert padding)

« offsetof can be used to get actual field offset
= Qverall struct must be aligned according to largest field
= Total struct size must be multiple of its alignment

(may insert padding)

« sizeof should be used to get true size of structs

CSESSL, Winter

How the Programmer Can Save Space

« Compiler must respect order elements are declared in

= Sometimes the programmer can save space by declaring
large data types first

struct S4 { struct S5 {
char c; int i;
int i; - char c;
char d; char d;
}o*pi b orpi
R « o] [[efi]
L J L J

T T
12 bytes 8 bytes

struct old {
int i;
short s([3];
char *c;

float f;
}i

—

sizeof(struct old) =

A.

B. 22 bytes

C. 28 bytes

D. 32bytes

E. We'relost...

Peer Instruction Question

> Minimize the size of the struct by re-ordering the vars

struct new {
int ilg

- What are the old and new sizes of the struct?

sizeof(struct new) =

Summary

Arraysin C

= Aligned to satisfy every element’s alignment requirement

Structures

= Allocate bytes in order declared

= Padin middle and at end to satisfy alignment

Unions

= Provide different views of the same memory location

Unions

« Only allocates enough space for the largest element

in union

« Can only use one member at a time

struct s { union U { ?l
char c; char c; -
1
int 1(2]; Preat O I IETCTI ST
double v; double v; Y
} *sp; } *up; upt0 up+a up+8
[<] T i[1] v
sp+0 spt+d sp+8 sp+16 sp+24

