UNIVERSITY of WASHINGTON L12: Procedures & Executables

HINGTON

Procedures & Executables Administrative

CSE 351 Winter 2018

MY NEW LANGUAGE 15 GRERT BT IT + Lab 2 due Friday (2/2)
Instructor: HAS A FEL) QUIRKS REGARDING TYPE:

Mark Wyse > 2+7 = Lab 1 grading — see Piazza post

Teaching Assistants:
Kevin Bi @0 = Midterm next Monday (2/5)

Parker DeWilde > NaN [= Check Piazza this week for last minute announcements
Emily Furst ? 5_2/0)'2 = Bring your UW Student ID (Husky Card)

8 5) = Review session 2:00-4:00pm on Saturday (2/3) in EEB 125
Waylon Huang FLOOR(10.5)) V)

Vinny Palaniappan

Sarah House

https://xked.com/1537,

ASHINGTON 2 (CSE3SL, Winler 2018 v WASHINGTON

Procedures Register Saving Conventions

« When procedure yoo calls who:

« Stack Structure = yoo is the caller

« Calling Conventions = who is the callee
= Passing control = Can registers be used for temporary storage?
® Passing data yoo: who:

= Managing local data movg $15213, subq $18213, [3rdx
+ Register Saving Conventions LUl iy o
g g addq srax ret
« lllustration of Recursion © 00
ret

= No! Contents of register $rdx overwritten by who!
= This could be trouble — something should be done. Either:
« Caller should save $rdx before the call (and restore it after the call)
- Callee should save $rdx before using it (and restore it before returning)

UNIVERSITY of WASHINGTON L12: Procedures & Executables

HINGTON

jures & Execuables csi

Register Saving Conventions x86-64 Linux Register Usage, part 1
« “Caller-saved” registers + $rax Return value e
= |tis the caller’s responsibility to save any important data in " Returnvalue S rdi
these registers before calling another procedure (i.e. the " Also caller-saved & restored = l
callee can freely change data in these registers) * Can be modified by procedure fEsd
= Caller saves values in its stack frame before calling Callee, » %rdi, ..., %r9 srdx
then restores values after the call " Arguments $rcx
“ ” . ® Also caller-saved & restored >
+ “Callee-saved” registers = Can be modified by procedure it
® |tis the callee’s responsibility to save any data in these + %$rl0, %$rll sr9
registers before using the registers (i.e. the caller assumes ® Caller-saved & restored $rl0
the data will be the same across the callee procedure call) * Can be modified by procedure tc:r":i::‘r’:: ‘l: Sr1l

= Callee saves values in its stack frame before using, then
restores them before returning to caller

https://xkcd.com/1537/

x86-64 Linux Register Usage, part 2

$rbx, $rl2, $rl3, %rl4

'
= Callee-saved
o
= Callee must save & restore

ies

= Callee-saved Srld

= Callee must save & restore
= May be used as frame pointer Special =

= Can mix & match
$rsp
= Special form of callee save

= Restored to original value upon
exit from procedure

x86-64 64-bit Registers: Usage Conventions
$rax Return value - Caller saved %r8 Argument #5 - Caller saved
$rbx Callee saved %r9 Argument #6 - Caller saved
$rcx Argument #4 - Caller saved %rl0 Caller saved
$rdx Argument #3 - Caller saved %rll Caller Saved
$rsi Argument #2 - Caller saved $rl2 Callee saved
%rdi Argument #1 - Caller saved %rl3 Callee saved
$rsp Stack pointer %rld Callee saved
%rbp Callee saved %rl5 Callee saved
5

ASHINGTON

Callee-Saved Example (step 1)

Tong call incrz(long x) { Initial Stack Structure

long vl = 351;
long v2 = increment (&vl, 100);
return x+v2;

} retaddr [——%rsp

call_incr2:
pushg $rbx

subg $16, $rsp Resulting Stack Structure
movg srdi, $rbx

movq $351, 8(%rsp)

movl $100, S%esi

leaq 8(%rsp), %rdi

call increment retaddr

addq 3rbx, %rax Saved %rbx

addq $16, %rsp

Popgq $rbx
ret Unused [—— Srsp

351 f—>%rsp+8

HINGTON

Callee-Saved Example (step 2)

Stack Structure

long call_incr2(long x) {
long vl = 351;
long v2 = increment (&v1l, 100);
return x+v2;

Rtn address

Saved %rbx

2% +
call_incr2: 351 rsp+8

pushgq $rbx Unused [——%rsp
subg $16, %rsp

movq $rdi, %rbx

movy e ns(/“.CSp) Pre-return Stack Structure
movl $100, %esi

leaq 8(%rsp), %rdi

call increment

addgq 3rbx, %rax

addq 516, %rsp Rtn address —— %rsp
Popq %rbx

ret

L12: Procedures & Executables

Why Caller and Callee Saved?

« We want one calling convention to simply separate
implementation details between caller and callee

= In general, neither caller-save nor callee-save is “best”:
= |f caller isn’t using a register, caller-save is better
= |f callee doesn’t need a register, callee-save is better
= |If “do need to save”, callee-save generally makes smaller
programs
« Functions are called from multiple places

= So... “some of each” and compiler tries to “pick registers”
that minimize amount of saving/restoring

L12: Procedises & Executables

Register Conventions Summary

« Caller-saved register values need to be pushed onto
the stack before making a procedure call only if the
Caller needs that value later
= Callee may change those register values

« Callee-saved register values need to be pushed onto
the stack only if the Callee intends to use those
registers
= Caller expects unchanged values in those registers

« Don’t forget to restore/pop the values later!

Procedures

« Stack Structure

« Calling Conventions

= Passing control

® Passing data

= Managing local data
+ Register Saving Conventions
+ lllustration of Recursion

Recursive Function

/* Recursive popcount */
long pcount_r (unsigned long x) {
aiE

return (x&l)-+pcount r(x >> 1);

Compiler Explorer:

https://godbolt.org/g/W8DxeR

« Compiled with -01 for brevity
instead of -Og

* Try -02 instead!

pcount_r:
movl $0, %eax
testq %rdi, %$rdi
Jje .L6
pushg Srbx
movq %rdi, %rbx
shrq Srdi
call pcount_r
andl $1, %ebx
addqg %rbx, %rax
PopPq Srbx

-L6:
rep ret

Recursive Function: Base Case

/* Recursive popcount */
long pcount_r (unsigned long x) {
if (x == 0)
return 0;
else
return (x&l)+pcount_r(x >> 1)

Fegver| —uset) | e

$rdi X Argument

%$rax Returnvalue Return value

Trick because some AMD
hardware doesn’t like
jumping to ret

§ pcount_r:

movl

testqg %$rdi, %rdi
je L6

pushg $rbx

movq $rdi, %$rbx
shrqg $rdi

call pcount_r
andl $1, %ebx
addq %$rbx, %rax
PopPq $rbx
L6:

Recursive Function: Callee Register Save

/* Recursive popcount */
long pcount_r (unsigned long x) {
if (x == 0)
return 0;
else
return (x&l)+pcount_r(x >> 1);

The Stack

Need original value

of x after recursive
calltopcount_r.

“Save” by putting in

%rbx (callee rtn <main+?>

saved $rbx

saved), butneedto Srsp -

save old value of
%rbx before you
change it.

Srdi X Argument
pcount_r:
movl $0, %eax
testqg %$rdi, %rdi
Je .L6
pushg $rbx
movq %rdi, S%rbx
shrq Srdi
call pcount_r
andl $1, %ebx
addqg %rbx, %rax
Popq Srbx
-L6:
rep ret
16

L12: Procedures & Executables

Recursive Function: Call Setup

/* Recursive popcount */
long pcount_r (unsigned long x) {
if (x == 0)
return 0;
else

return (x&l)+pcount r(x >> 1);

The Stack

rtn <main+?>

saved $rbx

$rsp -

[Regiter|Usefe) | Type |
$rdi x (new) Argument
%$rbx x (old) Callee saved

pcount_r:
movl $0, %eax
testqg %$rdi, %rdi
je .L6
pushqg $rbx
movqg %rdi, %rbx
shrq $rdi
call pcount_r
andl $1, %ebx
addq %rbx, %rax
PopPq $rbx

.L6:
rep ret

Recursive Function: Call

/* Recursive popcount */
long pcount_r (unsigned long x) {
if (x == 0)
return 0;
else
return (x&l)+pcount r(x >> 1);

The Stack

rtn <main+?>

saved rbx

$rsp = |rtn <pcount_r+22>

reiser| st e |

Recursive call
$rax Return value
return value
$rbx x (old) Callee saved
pcount_r:
movl $0, %eax
testq $rdi, %rdi
je .L6
pushg Srbx
movq %rdi, %rbx
shrq Srdi
call pcount_r
andl $1, %ebx
addq $rbx, %rax
PopPq Srbx
.L6:
rep ret

https://godbolt.org/g/W8DxeR

Recursive Function: Result

7+ Recursive popcount */ Register| Usels) | Type |
10?? Tiogrjti)r(unsxgned femg &) { %rax Returnvalue Return value
return 0; $rbx x&1 Callee saved
else
return (x&l)+pcount_r(x >> 1);
} - pcount_r:
movl $0, %eax
The Stack ;:s‘:q oty fra
pushqg $rbx
movq %rdi, %rbx
shrq %$rdi
rtn <main+?> call BEEE_©
andl $1, %ebx
%rsp = saved $rbx addq $rbx, %rax
POPq $rbx
.L6:
rep ret

Recursive Function: Completion

1T [PeammE 2 (i deny =) { %rax Returnvalue Returnvalue
if (x == 0)
return 0; 3rbx Previous Callee
else $rbxvalue restored
return (x&l)+pcount_r(x >> 1);
} - pcount_r:
movl $0, %eax
testq %rdi, %$rdi
The Stack je iG
pushg Srbx
.. movq %rdi, %rbx
$rsp - shrq Srdi
. call pcount_r
L _rtnsmaint® | andl 51, %ebx
Ljf"fdjﬂfb:iJ addgq $rbx, %rax
popa srbx
.L6:
rep ret

Observations About Recursion

« Works without any special consideration

= Stack frames mean that each function call has private
storage
« Saved registers & local variables
« Saved return pointer

= Register saving conventions prevent one function call from
corrupting another’s data
« Unless the code explicitly does so (e.g. buffer overflow)

= Stack discipline follows call / return pattern
« If P calls Q, then Q returns before P
« Last-In, First-Out (LIFO)

« Also works for mutual recursion (P calls Q; Q calls P)

x86-64 Stack Frames

« Many x86-64 procedures have a minimal stack frame

= Only return address is pushed onto the stack when
procedure is called

« A procedure needs to grow its stack frame when it:

Has too many local variables to hold in caller-saved registers

Has local variables that are arrays or structs
Uses & to compute the address of a local variable

Calls another function that takes more than six arguments

Is using caller-saved registers and then calls a procedure
Modifies/uses callee-saved registers

L12: Procedures & Executables

X86-64 Procedure Summary

Important Points
® Procedures are a combination of

. . . Caller
instructions and conventions Frame
« Conventions prevent functions from
disrupting each other Arguments
7+
= Stack is the right data structure for RETrIA
eturn r
procedure call/return %rbp — | Old%2bp
«+ If Pcalls Q, then Q returns before P (Optional)
= Recursion handled by normal calling Saved
conventions Registers
. +
Heavy use of registers Local
= Faster than using memory Variables
= Use limited by data size and conventions A
L rgument
Minimize use of the Stack Build

4rsp —

Roadmap

C: Java:

car *c = malloc(sizeof (car));
c->miles = 100;
c->gals = 17;

Car c = new Car();
c.setMiles (100);
c.setGals (17);

float mpg = get_mpg(c); float mpg = Executables
free(c): Cc.getMPG () ;
== —
Assembly get_mpg:
. pushq %rbp
language: movq %rsp, Srbp
popg %rbp
et ! 0S:
.2
Machine 0111010000011000 -- N7/
code: 100011010000010000000010 DS
- 1000100111000010 .-
110000011111101000011111 =
¥
Computer
system:

Building an Executable from a C File

« Codeinfiles pl.c p2.c

=« Compile withcommand: gcc -Og pl.c p2.c -0 p
® Put resulting machine code in file p

« Run with command: ./p

text ‘ Cprogram (pl.c p2.c) ‘

Compiler (gcc -0g -S)

text ‘ Asm program (pl.s p2.s) ‘

Assembler (gcc -coras)

binary ‘ Object program (pl.o0 p2.0) ‘ ‘ Static libraries (. a) ‘
Linker (gcc or 1d)

binary ‘ Executable program (p)

Loader (the OS)

Compiler

= Input: Higher-level language code (e.g. C, Java)
" foo.c

= Output: Assembly language code (e.g. x86, ARM, MIPS)
= foo.s

« Firstthere’s a preprocessor step to handle #directives
= Macro substitution, plus other specialty directives
= |f curious/interested: http://tigcc.ticalc.org/doc/cpp.html
+ Super complex, whole courses devoted to these!
« Compiler optimizations
= “Level” of optimization specified by capital ‘0’ flag (e.g. -Og, -03)

= Options: https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html

ASHINGTON

Compiling Into Assembly

« CCode (sum.c)

void sumstore (long x, long y, long *dest) {
long t = x + y;
*dest = t;

}

x86-64 assembly (gcc -Og -S sum.c)
= Generates file sum. s (see https://godbolt.org/g/034FHp)

sumstore (long, long, long*):

addq $rdi, %rsi
movq $rsi, (%rdx)
ret

Warning: You may get different results with other versions of
gcc and different compiler settings

NGTON

Assembler

= Input: Assembly language code (e.g. x86, ARM, MIPS)
= foo.s
+ Output: Object files (e.g. ELF, COFF)

" foo.o

= Contains object code and information tables

» Reads and uses assembly directives

" eg. .text, .data, .quad

= x86: https://docs.oracle.com/cd/E26502 01/html/E28388/eoiyg.html
« Produces “machine language”

= Does its best, but object file is not a completed binary
« Example: gcc -c foo.s

L12: Procedures & Executables

Producing Machine Language

= Simple cases: arithmetic and logical operations, shifts, etc.
= All necessary information is contained in the instruction itself

« What about the following?
= Conditional jump
= Accessing static data (e.g. global var or jump table)
" call

= Addresses and labels are problematic because final executable
hasn’t been constructed yet!
= So how do we deal with these in the meantime?

L12: Procedises & Executables

Object File Information Tables

=« Symbol Table holds list of “items” that may be used by other
files

= Non-local labels — function names for call
= Static Data — variables & literals that might be accessed across files

+ Relocation Table holds list of “items” that this file needs the
address of later (currently undetermined)
= Any label or piece of static data referenced in an instruction in this file
« Both internal and external

= Each file has its own symbol and relocation tables

http://tigcc.ticalc.org/doc/cpp.html
https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html
https://godbolt.org/g/o34FHp
https://docs.oracle.com/cd/E26502_01/html/E28388/eoiyg.html

Object File Format

1) object file header: size and position of the other pieces of the
object file

2) text segment: the machine code
3) data segment: data in the source file (binary)

4) relocation table: identifies lines of code that need to be
“handled”

5) symbol table: list of this file’s labels and data that can be
referenced

6) debugging information

More info: ELF format
" http://

skyfree.org/linux/references/ELF Format.pdf

Linker

Input: Object files (e.g. ELF, COFF)

" foo.o

Output: executable binary program
" a.out

Combines several object files into a single executable (/inking)

Enables separate compilation/assembling of files

= Changes to one file do not require recompiling of whole program

Linking

1) Take text segment from each . o file and put them together
2) Take data segment from each . o file, put them together, and
concatenate this onto end of text segments
3) Resolve References
® Go through Relocation Table; handle each entry

object file 1
info 1 a.out
data 1 Relocated data 1

text 1 Relocated data 2

Linker

object file 2 Relocated text 1
info 2 Relocated text 2
data 2
text 2

NGTON

Disassembling Object Code

« Disassembled:

0000000000400536 <sumstore>:
400536: 48 01 fe add %rdi, $rsi
400539: 48 89 32 mov $rsi, (%rdx)
40053c: c3 retq

« Disassembler (objdump -d sum)
= Useful tool for examining object code (man 1 objdump)
= Analyzes bit pattern of series of instructions
= Produces approximate rendition of assembly code
= Can run on either a. out (complete executable) or . o file

L12: Procedures & Executables

What Can be Disassembled?

$ objdump -d WINWORD.EXE
WINWORD.EXE: file format pei-i386

No symbols in "WINWORD.EXE".
Disassembly of section .text:

30001000 <.text>:

30001000

30001001 : - _
30001003+ Reverse engineering forbidden by
30001005 : Microsoft End User License Agreement
3000100a:

» Anything that can be interpreted as executable code

Disassembler examines bytes and attempts to reconstruct
assembly source

L12: Procedises & Executables

Loader

= Input: executable binary program, command-line arguments
" ./a.out argl arg2

« Output: <program is run>

« Loader duties primarily handled by OS/kernel

= More about this when we learn about processes
« Memory sections (Instructions, Static Data, Stack) are set up
« Registers are initialized

http://www.skyfree.org/linux/references/ELF_Format.pdf

