
CSE351, Winter 2018L07: x86-64 Assembly

x86-64 Assembly
CSE 351 Winter 2018

Instructor:

Mark Wyse

Teaching Assistants:

Kevin Bi

Parker DeWilde

Emily Furst

Sarah House

Waylon Huang

Vinny Palaniappan

http://xkcd.com/409/

http://xkcd.com/409/

CSE351, Winter 2018L07: x86-64 Assembly

Administrivia

❖ Lab 1 due today!
▪ Submit bits.c and pointer.c

❖ Homework 2 due next Wednesday (1/24)

▪ On Integers, Floating Point, and x86-64

2

CSE351, Winter 2018L07: x86-64 Assembly

Floating point topics

❖ Fractional binary numbers

❖ IEEE floating-point standard

❖ Floating-point operations and rounding

❖ Floating-point in C

❖ There are many more details that
we won’t cover

▪ It’s a 58-page standard…

3

CSE351, Winter 2018L07: x86-64 Assembly

Floating Point in C

❖ C offers two (well, 3) levels of precision
float 1.0f single precision (32-bit)

double 1.0 double precision (64-bit)

long double 1.0L (“double double” or quadruple)
precision (64-128 bits)

❖ #include <math.h> to get INFINITY and NAN
constants

❖ Equality (==) comparisons between floating point
numbers are tricky, and often return unexpected
results, so just avoid them!

4

!!!

CSE351, Winter 2018L07: x86-64 Assembly

Floating Point Conversions in C

❖ Casting between int, float, and double changes
the bit representation
▪ int → float

• May be rounded (not enough bits in mantissa: 23)

• Overflow impossible

▪ int or float → double

• Exact conversion (all 32-bit ints representable)

▪ long → double

• Depends on word size (32-bit is exact, 64-bit may be rounded)

▪ double or float → int

• Truncates fractional part (rounded toward zero)

• “Not defined” when out of range or NaN: generally sets to Tmin
(even if the value is a very big positive)

5

!!!

CSE351, Winter 2018L07: x86-64 Assembly

Number Representation Really Matters

❖ 1991: Patriot missile targeting error
▪ clock skew due to conversion from integer to floating point

❖ 1996: Ariane 5 rocket exploded ($1 billion)
▪ overflow converting 64-bit floating point to 16-bit integer

❖ 2000: Y2K problem
▪ limited (decimal) representation: overflow, wrap-around

❖ 2038: Unix epoch rollover
▪ Unix epoch = seconds since 12am, January 1, 1970

▪ signed 32-bit integer representation rolls over to TMin in 2038

❖ Other related bugs:
▪ 1982: Vancouver Stock Exchange (truncation instead of rounding)

▪ 1994: Intel Pentium FDIV (floating point division) HW bug ($475 million)

▪ 1997: USS Yorktown “smart” warship stranded: divide by zero

▪ 1998: Mars Climate Orbiter crashed: unit mismatch ($193 million)
6

CSE351, Winter 2018L07: x86-64 Assembly

Roadmap

7

car *c = malloc(sizeof(car));

c->miles = 100;

c->gals = 17;

float mpg = get_mpg(c);

free(c);

Car c = new Car();

c.setMiles(100);

c.setGals(17);

float mpg =

c.getMPG();

get_mpg:

pushq %rbp

movq %rsp, %rbp

...

popq %rbp

ret

Java:C:

Assembly
language:

Machine
code:

0111010000011000

100011010000010000000010

1000100111000010

110000011111101000011111

Computer
system:

OS:

Memory & data
Integers & floats
x86 assembly
Procedures & stacks
Executables
Arrays & structs
Memory & caches
Processes
Virtual memory
Memory allocation
Java vs. C

CSE351, Winter 2018L07: x86-64 Assembly

Basics of Machine Programming & Architecture

❖ What is an ISA (Instruction Set Architecture)?

❖ A brief history of Intel processors and architectures

❖ Intro to Assembly and Registers

8

CSE351, Winter 2018L07: x86-64 Assembly

Translation

9

What makes programs run fast(er)?

Hardware

User
program

in C
AssemblerC

compiler

Code Time Compile Time Run Time

.exe file.c file

CSE351, Winter 2018L07: x86-64 Assembly

C Language

HW Interface Affects Performance

10

x86-64

Intel Pentium 4

Intel Core i7

AMD Ryzen

AMD Epyc

Intel Xeon

GCC

ARMv8
(AArch64/A64)

ARM Cortex-A53

Apple A7

Clang

Your
program

Program
B

Program
A

CompilerSource code Architecture
Different applications
or algorithms

Perform optimizations,
generate instructions

Different
implementations

Hardware
Instruction set

CSE351, Winter 2018L07: x86-64 Assembly

Definitions

❖ Architecture (ISA): The parts of a processor design
that one needs to understand to write assembly code

▪ “What is directly visible to software”

❖ Microarchitecture: Implementation of the
architecture

▪ CSE/EE 469, 470

❖ Are the following part of the architecture?

▪ Number of registers?

▪ How about CPU frequency?

▪ Cache size? Memory size?

11

CSE351, Winter 2018L07: x86-64 Assembly

Instruction Set Architectures

❖ The ISA defines:

▪ The system’s state (e.g. registers, memory, program
counter)

▪ The instructions the CPU can execute

▪ The effect that each of these instructions will have on the
system state

12

CPU

MemoryPC

Registers

CSE351, Winter 2018L07: x86-64 Assembly

Instruction Set Philosophies

❖ Complex Instruction Set Computing (CISC): Add more
and more elaborate and specialized instructions as
needed

▪ Lots of tools for programmers to use, but hardware must be
able to handle all instructions

▪ x86-64 is CISC, but only a small subset of instructions
encountered with Linux programs

❖ Reduced Instruction Set Computing (RISC): Keep
instruction set small and regular

▪ Easier to build fast hardware

▪ Let software do the complicated operations by composing
simpler ones

13

CSE351, Winter 2018L07: x86-64 Assembly

General ISA Design Decisions

❖ Instructions

▪ What instructions are available? What do they do?

▪ How are they encoded?

❖ Registers

▪ How many registers are there?

▪ How wide are they?

❖ Memory

▪ How do you specify a memory location?

14

CSE351, Winter 2018L07: x86-64 Assembly

Mainstream ISAs

15

Macbooks & PCs
(Core i3, i5, i7, M)
x86-64 Instruction Set

Smartphone-like devices
(iPhone, iPad, Raspberry Pi)
ARM Instruction Set

Digital home & networking
equipment
(Blu-ray, PlayStation 2)
MIPS Instruction Set

http://ref.x86asm.net/coder64-abc.html
http://infocenter.arm.com/help/topic/com.arm.doc.qrc0001m/QRC0001_UAL.pdf
https://inst.eecs.berkeley.edu/~cs61c/resources/MIPS_Green_Sheet.pdf

CSE351, Winter 2018L07: x86-64 Assembly

Intel/AMD x86 Evolution: Milestones

Name Date Transistors MHz

8086 1978 29K 5-10

First 16-bit Intel processor. Basis for IBM PC & DOS
1 MB address space

386 1985 275K 16-33

First 32-bit Intel processor, referred to as IA32
Added “flat addressing,” capable of running Unix

Pentium (P5) 1993 3.2M 60

First superscalar IA32

Athlon (K7) 1999 22M 500-2333

First desktop processor with 1 GHz clock (at roughly same time as Pentium III)

Athlon 64 (K8) 2003 106M 1600-3200

First x86-64 processor architecture

Pentium 4E 2004 125M 2800-3800

First 64-bit Intel x86 processor

16

CSE351, Winter 2018L07: x86-64 Assembly

Intel/AMD x86 Evolution: Milestones

Name Date Transistors MHz

Core 2 2006 291M 1060-3500

First multi-core Intel Processor

Core i7 2008 731M 1700-3900

Four cores

AMD Phenom (K10) 2008 758M 1800-2600

First “true” quad core, with all cores on same silicon die

Core i7 (Coffee Lake) 2017 ? 2800-4700

Ryzen 7 (Zen) 2017 4.8B 3000-4200

17

CSE351, Winter 2018L07: x86-64 Assembly

Technology Scaling

18http://www.economist.com/technology-quarterly/2016-03-12/after-moores-law

Breakdown!

CSE351, Winter 2018L07: x86-64 Assembly

Transition to 64-bit

❖ Intel attempted radical shift from IA32 to IA64 (2001)
▪ Completely new architecture (Itanium)

▪ Execute IA32 code only as legacy

▪ Performance disappointing

❖ AMD solution: “AMD64” (2003)
▪ x86-64, evolutionary step from IA32

❖ Intel pursued IA64
▪ Couldn’t admit its mistake with Itanium

❖ Intel announces “EM64T” extension to IA32 (2004)
▪ Extended Memory 64-bit Technology

▪ Nearly identical to AMD64!

19

CSE351, Winter 2018L07: x86-64 Assembly

CPU

Assembly Programmer’s View

❖ Programmer-visible state
▪ PC: the Program Counter (%rip in x86-64)

• Address of next instruction

▪ Named registers

• Together in “register file”

• Heavily used program data

▪ Condition codes

• Store status information about most recent
arithmetic operation

• Used for conditional branching 20

PC
Registers

Memory

• Code
• Data
• Stack

Addresses

Data

InstructionsCondition
Codes

❖ Memory
▪ Byte-addressable array

▪ Code and user data

▪ Includes the Stack (for
supporting procedures)

CSE351, Winter 2018L07: x86-64 Assembly

Three Basic Kinds of Instructions

1) Transfer data between memory and register

▪ Load data from memory into register
• %reg = Mem[address]

▪ Store register data into memory
• Mem[address] = %reg

2) Perform arithmetic operation on register or memory
data
▪ c = a + b; z = x << y; i = h & g;

3) Control flow: what instruction to execute next

▪ Unconditional jumps to/from procedures

▪ Conditional branches
21

Remember: Memory
is indexed just like an
array of bytes!

CSE351, Winter 2018L07: x86-64 Assembly

x86-64 Assembly “Data Types”

❖ Integral data of 1, 2, 4, or 8 bytes
▪ Data values

▪ Addresses (untyped pointers)

❖ Floating point data of 4, 8, 10 or 2x8 or 4x4 or 8x2
▪ Different registers for those (e.g. %xmm1, %ymm2)

▪ Come from extensions to x86 (SSE, AVX, …)

❖ No aggregate types such as arrays or structures
▪ Just contiguously allocated bytes in memory

❖ Two common syntaxes
▪ “AT&T”: used by our course, slides, textbook, gnu tools, …

▪ “Intel”: used by Intel documentation, Intel tools, …

▪ Must know which you’re reading

22

Not covered
In 351

CSE351, Winter 2018L07: x86-64 Assembly

What is a Register?

❖ A location in the CPU that stores a small amount of
data, which can be accessed very quickly (once every
clock cycle)

❖ Registers have names, not addresses
▪ In assembly, they start with % (e.g. %rsi)

❖ Registers are at the heart of assembly programming

▪ They are a precious commodity in all architectures, but
especially x86

23

CSE351, Winter 2018L07: x86-64 Assembly

x86-64 Integer Registers – 64 bits wide

▪ Can reference low-order 4 bytes (also low-order 2 & 1 bytes)

24

%r8d%r8

%r9d%r9

%r10d%r10

%r11d%r11

%r12d%r12

%r13d%r13

%r14d%r14

%r15d%r15

%rsp %esp

%eax%rax

%ebx%rbx

%ecx%rcx

%edx%rdx

%esi%rsi

%edi%rdi

%ebp%rbp

CSE351, Winter 2018L07: x86-64 Assembly

Some History: IA32 Registers – 32 bits wide

25

%esi %si

%edi %di

%esp %sp

%ebp %bp

%eax %ax %ah %al

%ecx %cx %ch %cl

%edx %dx %dh %dl

%ebx %bx %bh %bl

16-bit virtual registers
(backwards compatibility)

ge
n

e
ra

l p
u

rp
o

se

accumulate

counter

data

base

source index

destination index

stack pointer

base pointer

Name Origin
(mostly obsolete)

CSE351, Winter 2018L07: x86-64 Assembly

Memory vs. Registers

❖ Addresses vs. Names
▪ 0x7FFFD024C3DC %rdi

❖ Big vs. Small

▪ ~ 8 GB (16 x 8 B) = 128 B

❖ Slow vs. Fast

▪ ~50-100 ns sub-nanosecond timescale

❖ Dynamic vs. Static

▪ Can “grow” as needed fixed number in hardware
while program runs

26

CSE351, Winter 2018L07: x86-64 Assembly

Operand types

❖ Immediate: Constant integer data
▪ Examples: $0x400, $-533

▪ Like C literal, but prefixed with ‘$’

▪ Encoded with 1, 2, 4, or 8 bytes
depending on the instruction

❖ Register: 1 of 16 integer registers
▪ Examples: %rax, %r13

▪ But %rsp reserved for special use

▪ Others have special uses for particular
instructions

❖ Memory: Consecutive bytes of memory
at a computed address
▪ Simplest example: (%rax)

▪ Various other “address modes”
27

%rax

%rcx

%rdx

%rbx

%rsi

%rdi

%rsp

%rbp

%rN

CSE351, Winter 2018L07: x86-64 Assembly

Summary

❖ x86-64 is a complex instruction set computing (CISC)
architecture

❖ Registers are named locations in the CPU for holding
and manipulating data

▪ x86-64 uses 16 64-bit wide registers

❖ Assembly operands include immediates, registers,
and data at specified memory locations

28

CSE351, Winter 2018L07: x86-64 Assembly

Floating Point Summary

❖ Floats also suffer from the fixed number of bits
available to represent them
▪ Can get overflow/underflow

▪ “Gaps” produced in representable numbers means we can
lose precision, unlike ints
• Some “simple fractions” have no exact representation (e.g. 0.2)

• “Every operation gets a slightly wrong result”

❖ Floating point arithmetic not associative or
distributive
▪ Mathematically equivalent ways of writing an expression

may compute different results

❖ Never test floating point values for equality!

❖ Careful when converting between ints and floats!
29

CSE351, Winter 2018L07: x86-64 Assembly

Floating Point Summary

❖ Converting between integral and floating point data
types does change the bits

▪ Floating point rounding is a HUGE issue!
• Limited mantissa bits cause inaccurate representations

• Floating point arithmetic is NOT associative or distributive

30

