Floating Point

CSE 351 Winter 2018

Instructor:

Mark Wyse

Teaching Assistants:

Kevin Bi Parker, DeWilde, Emily Furst, Sarah House, Waylon Huang, Vinny Palaniappan

http://xkcd.com/571/

Administrivia

- Lab 1 due Friday (1/19)
 - Submit bits.c and pointer.c
- Homework 2 out since 1/15, due 1/24
 - On Integers, Floating Point, and x86-64

Unsigned Multiplication in C

- Standard Multiplication Function
 - Ignores high order w bits
- Implements Modular Arithmetic
 - UMult_w $(u, v) = u \cdot v \mod 2^w$

Multiplication with shift and add

- ◆ Operation u<<k gives u*2^k
 - Both signed and unsigned

Examples:

- u<<3 == u * 8
- u << 5 u << 3 == u * 24
- Most machines shift and add faster than multiply
 - Compiler generates this code automatically

Number Representation Revisited

- What can we represent in one word?
 - Signed and Unsigned Integers
 - Characters (ASCII)
 - Addresses
- How do we encode the following:
 - Real numbers (e.g. 3.14159)
 - Very large numbers (e.g. 6.02×10²³)
 - Very small numbers (e.g. 6.626×10⁻³⁴)
 - Special numbers (e.g. ∞, NaN)

Floating Point Topics

- Fractional binary numbers
- IEEE floating-point standard
- Floating-point operations and rounding
- Floating-point in C

- There are many more details that we won't cover
 - It's a 58-page standard...

Representation of Fractions

"Binary Point," like decimal point, signifies boundary between integer and fractional parts:

Example 6-bit representation:

- * Example: $10.1010_2 = 1 \times 2^1 + 1 \times 2^{-1} + 1 \times 2^{-3} = 2.625_{10}$
- Binary point numbers that match the 6-bit format above range from 0 (00.0000₂) to 3.9375 (11.1111₂)

Scientific Notation (Decimal)

- Normalized form: exactly one digit (non-zero) to left of decimal point
- Alternatives to representing 1/1,000,000,000
 - Normalized: 1.0×10⁻⁹
 - Not normalized: 0.1×10⁻⁸,10.0×10⁻¹⁰

Scientific Notation (Binary)

- Computer arithmetic that supports this called floating point due to the "floating" of the binary point
 - Declare such variable in C as float (or double)

Scientific Notation Translation

- Convert from scientific notation to binary point
 - Perform the multiplication by shifting the decimal until the exponent disappears
 - Example: $1.011_2 \times 2^4 = 10110_2 = 22_{10}$
 - Example: $1.011_2 \times 2^{-2} = 0.01011_2 = 0.34375_{10}$
- Convert from binary point to normalized scientific notation
 - Distribute out exponents until binary point is to the right of a single digit
 - Example: $1101.001_2 = 1.101001_2 \times 2^3$

Floating Point Topics

- Fractional binary numbers
- IEEE floating-point standard
- Floating-point operations and rounding
- Floating-point in C

- There are many more details that we won't cover
 - It's a 58-page standard...

CSE351. Winter 2018

IEEE Floating Point

❖ IEEE 754

- Established in 1985 as uniform standard for floating point arithmetic
- Main idea: make numerically sensitive programs portable
- Specifies two things: representation and result of floating operations
- Now supported by all major CPUs

Driven by numerical concerns

- Scientists/numerical analysts want them to be as real as possible
- Engineers want them to be easy to implement and fast
- In the end:
 - Scientists mostly won out
 - Nice standards for rounding, overflow, underflow, but...
 - Hard to make fast in hardware
 - Float operations can be an order of magnitude slower than integer ops

CSE351. Winter 2018

Floating Point Encoding

- Use normalized, base 2 scientific notation:
 - Value: ±1 × Mantissa × 2^{Exponent}
 - Bit Fields: $(-1)^S \times 1.M \times 2^{(E-bias)}$
- Representation Scheme:
 - Sign bit (0 is positive, 1 is negative)
 - Mantissa (a.k.a. significand) is the fractional part of the number in normalized form and encoded in bit vector M
 - Exponent weights the value by a (possibly negative) power of 2 and encoded in the bit vector E

1 bit 8 bits

23 bits

The Exponent Field

- Use biased notation
 - Read exponent as unsigned, but with bias of 2^{w-1}-1 = 127
 - Representable exponents roughly ½ positive and ½ negative
 - Exponent 0 (Exp = 0) is represented as E = 0b 0111 1111
- Why biased?
 - Makes floating point arithmetic easier
 - Makes somewhat compatible with two's complement
- Practice: To encode in biased notation, add the bias then encode in unsigned:
 - $Exp = 1 \rightarrow E = 0b$
 - $Exp = 127 \rightarrow E = 0b$
 - $Exp = -63 \rightarrow E = 0b$

CSE351. Winter 2018

The Mantissa (Fraction) Field

$$(-1)^{s} \times (1.M) \times 2^{(E-bias)}$$

- Note the implicit 1 in front of the M bit vector

 - Gives us an extra bit of precision
- Mantissa "limits"
 - Low values near M = 0b0...0 are close to 2^{Exp}
 - High values near M = 0b1...1 are close to 2^{Exp+1}

CSE351. Winter 2018

Peer Instruction Question

- What is the correct value encoded by the following floating point number?
 - 0b 0 10000000 110000000000000000000

A.
$$+ 0.75$$

$$B. + 1.5$$

$$C. + 2.75$$

$$D. + 3.5$$

E. We're lost...

Precision and Accuracy

- Precision is a count of the number of bits in a computer word used to represent a value
 - Capacity for accuracy
- Accuracy is a measure of the difference between the actual value of a number and its computer representation
 - High precision permits high accuracy but doesn't guarantee it. It is possible to have high precision but low accuracy.
 - Example: float pi = 3.14;
 - pi will be represented using all 24 bits of the mantissa (highly precise), but is only an approximation (not accurate)

Need Greater Precision?

Double Precision (vs. Single Precision) in 64 bits

L06: Floating Point

- C variable declared as double
- Exponent bias is now 2¹⁰-1 = 1023
- Advantages: greater precision (larger mantissa), greater range (larger exponent)
- Disadvantages: more bits used, slower to manipulate

Representing Very Small Numbers

- But wait... what happened to zero?
 - Using standard encoding 0x00000000 =
 - Special case: E and M all zeros = 0
 - Two zeros! But at least 0x00000000 = 0 like integers
- New numbers closest to 0:

$$a = 1.0...0_2 \times 2^{-126} = 2^{-126}$$

$$b = 1.0...01_2 \times 2^{-126} = 2^{-126} + 2^{-149}$$

- Normalization and implicit 1 are to blame
- Special case: E = 0, M ≠ 0 are denormalized numbers

Other Special Cases

- \bullet E = 0xFF, M = 0: $\pm \infty$
 - *e.g.* division by 0
 - Still work in comparisons!
- \star E = 0xFF, M \neq 0: Not a Number (NaN)
 - e.g. square root of negative number, 0/0, $\infty \infty$
 - NaN propagates through computations
 - Value of M can be useful in debugging
- New largest value (besides ∞)?
 - E = 0xFF has now been taken!
 - E = 0xFE has largest: $1.1...1_2 \times 2^{127} = 2^{128} 2^{104}$

Summary

Floating point approximates real numbers:

- Handles large numbers, small numbers, special numbers
- Exponent in biased notation (bias = 2^{w-1}-1)
 - Outside of representable exponents is overflow and underflow
- Mantissa approximates fractional portion of binary point
 - Implicit leading 1 (normalized) except in special cases
 - Exceeding length causes rounding

Exponent	Mantissa	Meaning
0x00	0	± 0
0x00	non-zero	± denorm num
0x01 – 0xFE	anything	± norm num
0xFF	0	± ∞
0xFF	non-zero	NaN

Floating point topics

- Fractional binary numbers
- IEEE floating-point standard
- Floating-point operations and rounding
- Floating-point in C

- There are many more details that we won't cover
 - It's a 58-page standard...

Distribution of Values

- What ranges are NOT representable?
 - Between largest norm and infinity
 Overflow
 - Between zero and smallest denorm Underflow
 - Between norm numbers? Rounding
- Given a FP number, what's the bit pattern of the next largest representable number?
 - What is this "step" when Exp = 0?
 - What is this "step" when Exp = 100?
- Distribution of values is denser toward zero

Floating Point Operations: Basic Idea

Value = $(-1)^{S} \times Mantissa \times 2^{Exponent}$

$$\star x +_f y = Round(x + y)$$

$$\star x \star_f y = Round(x \star y)$$

- Basic idea for floating point operations:
 - First, compute the exact result
 - Then round the result to make it fit into desired precision:
 - Possibly over/underflow if exponent outside of range
 - Possibly drop least-significant bits of mantissa to fit into M bit vector

Floating Point Addition

Line up the binary points!

- $\cdot (-1)^{S1} \times Man1 \times 2^{Exp1} + (-1)^{S2} \times Man2 \times 2^{Exp2}$
 - Assume Exp1 > Exp2

$$\begin{array}{r}
1.010*2^{2} \\
+ 1.000*2^{-1} \\
??? \\
1.0100*2^{2} \\
+ 0.0010*2^{2} \\
1.0110*2^{2}
\end{array}$$

- Exact Result: (-1)^S×Man×2^{Exp}
 - Sign S, mantissa Man:
 - Result of signed align & add
 - Exponent E: E1

- Adjustments:
 - If Man ≥ 2, shift Man right, increment Exp
 - If Man < 1, shift Man left k positions, decrement Exp by k
 - Over/underflow if Exp out of range
 - Round Man to fit mantissa precision

Floating Point Multiplication

$$\star$$
 (-1)^{S1}×Man1×2^{Exp1} × (-1)^{S2}×Man2×2^{Exp2}

- Exact Result: (-1)^S×M×2^E
 - Sign S: S1 ^ S2
 - Mantissa Man: Man1 × Man2
 - Exponent Exp: Exp1 + Exp2
- Adjustments:
 - If Man ≥ 2, shift Man right, increment Exp
 - Over/underflow if Exp out of range
 - Round Man to fit mantissa precision

Mathematical Properties of FP Operations

- Exponent overflow yields +∞ or -∞
- ❖ Floats with value +∞, -∞, and NaN can be used in operations
 - Result usually still $+\infty$, $-\infty$, or NaN; but not always intuitive
- Floating point operations do not work like real math, due to rounding

 - Not distributive: 100*(0.1+0.2) != 100*0.1+100*0.2
 30.00000000000003553 30
 - Not cumulative
 - Repeatedly adding a very small number to a large one may do nothing

Floating point topics

- Fractional binary numbers
- IEEE floating-point standard
- Floating-point operations and rounding
- Floating-point in C

- There are many more details that we won't cover
 - It's a 58-page standard...

Floating Point in C

C offers two (well, 3) levels of precision

float	1.0f	single precision (32-bit)
double	1.0	double precision (64-bit)
long double	1.0L	("double double" or quadruple) precision (64-128 bits)

- * #include <math.h> to get INFINITY and NAN
 constants
- Equality (==) comparisons between floating point numbers are tricky, and often return unexpected results, so just avoid them!

Floating Point Conversions in C

- Casting between int, float, and double changes the bit representation
 - int → float
 - May be rounded (not enough bits in mantissa: 23)
 - Overflow impossible
 - int or float → double
 - Exact conversion (all 32-bit ints representable)
 - \blacksquare long \rightarrow double
 - Depends on word size (32-bit is exact, 64-bit may be rounded)
 - double or float \rightarrow int
 - Truncates fractional part (rounded toward zero)
 - "Not defined" when out of range or NaN: generally sets to Tmin (even if the value is a very big positive)

Number Representation Really Matters

- 1991: Patriot missile targeting error
 - clock skew due to conversion from integer to floating point
- 1996: Ariane 5 rocket exploded (\$1 billion)
 - overflow converting 64-bit floating point to 16-bit integer
- 2000: Y2K problem
 - limited (decimal) representation: overflow, wrap-around
- 2038: Unix epoch rollover
 - Unix epoch = seconds since 12am, January 1, 1970
 - signed 32-bit integer representation rolls over to TMin in 2038

Other related bugs:

- 1982: Vancouver Stock Exchange 10% error in less than 2 years
- 1994: Intel Pentium FDIV (floating point division) HW bug (\$475 million)
- 1997: USS Yorktown "smart" warship stranded: divide by zero
- 1998: Mars Climate Orbiter crashed: unit mismatch (\$193 million)

Floating Point Summary

- Floats also suffer from the fixed number of bits available to represent them
 - Can get overflow/underflow
 - "Gaps" produced in representable numbers means we can lose precision, unlike ints
 - Some "simple fractions" have no exact representation (e.g. 0.2)
 - "Every operation gets a slightly wrong result"
- Floating point arithmetic not associative or distributive
 - Mathematically equivalent ways of writing an expression may compute different results
- Never test floating point values for equality!
- Careful when converting between ints and floats!

Floating Point Summary

- Converting between integral and floating point data types does change the bits
 - Floating point rounding is a HUGE issue!
 - Limited mantissa bits cause inaccurate representations
 - Floating point arithmetic is NOT associative or distributive

Denorm Numbers

This is extra (non-testable) material

- Denormalized numbers
 - No leading 1
 - Uses implicit exponent of -126 even though E = 0x00

L06: Floating Point

- Denormalized numbers close the gap between zero and the smallest normalized number
 - Smallest norm: $\pm 1.0...0_{two} \times 2^{-126} = \pm 2^{-126}$ So much closer to 0
 - Smallest denorm: $\pm 0.0...01_{two} \times 2^{-126} = \pm 2^{-149}$
 - There is still a gap between zero and the smallest denormalized number

Floating Point and the Programmer

```
#include <stdio.h>
                                       $ ./a.out
int main(int argc, char* argv[]) {
                                        0x3f800000 0x3f800001
  float f1 = 1.0;
                                        f1 = 1.000000000
  float f2 = 0.0;
                                        f2 = 1.000000119
  int i;
  for (i = 0; i < 10; i++)
                                       f1 == f3? yes
    f2 += 1.0/10.0;
 printf("0x%08x 0x%08x\n", *(int*)&f1, *(int*)&f2);
 printf("f1 = %10.9f\n", f1);
 printf("f2 = %10.9f\n\n", f2);
  f1 = 1E30;
  f2 = 1E-30;
  float f3 = f1 + f2;
 printf("f1 == f3? sn'', f1 == f3 ? "yes" : "no" );
  return 0;
```

BONUS SLIDES

An example that applies the IEEE Floating Point concepts to a smaller (8-bit) representation scheme.

Tiny Floating Point Example

- 8-bit Floating Point Representation
 - The sign bit is in the most significant bit (MSB)
 - The next four bits are the exponent, with a bias of $2^{4-1}-1=7$
 - The last three bits are the mantissa

- Same general form as IEEE Format
 - Normalized binary scientific point notation
 - Similar special cases for 0, denormalized numbers, NaN, ∞

Dynamic Range (Positive Only)

	SE	M	Exp	Value	
	0 0000		-6	0	
	0 0000	001	-6	1/8*1/64 = 1/512	closest to zero
Denormalized	0 0000	010	-6	2/8*1/64 = 2/512	
numbers	•••				
	0 0000	110	-6	6/8*1/64 = 6/512	
	0 0000) 111	-6	7/8*1/64 = 7/512	largest denorm
	0 0001	000	-6	8/8*1/64 = 8/512	smallest norm
	0 0001	001	-6	9/8*1/64 = 9/512	
	0 0110	110	-1	14/8*1/2 = 14/16	
	0 0110	111	-1	15/8*1/2 = 15/16	closest to 1 below
Normalized	0 0111	000	0	8/8*1 = 1	
numbers	0 0111	001	0	9/8*1 = 9/8	closest to 1 above
	0 0111	010	0	10/8*1 = 10/8	
	0 1110	110	7	14/8*128 = 224	
	0 1110) 111	7	15/8*128 = 240	largest norm
	0 1111	000	n/a	inf	

Special Properties of Encoding

- Floating point zero (0+) exactly the same bits as integer zero
 - All bits = 0
- Can (Almost) Use Unsigned Integer Comparison
 - Must first compare sign bits
 - Must consider 0⁻ = 0⁺ = 0
 - NaNs problematic
 - Will be greater than any other values
 - What should comparison yield?
 - Otherwise OK
 - Denorm vs. normalized
 - Normalized vs. infinity