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Administrivia

❖ Lab 1 due Friday (1/19)
▪ Submit bits.c and pointer.c

❖ Homework 2 out since 1/15, due 1/24

▪ On Integers, Floating Point, and x86-64
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Unsigned Multiplication in C

❖ Standard Multiplication Function

▪ Ignores high order 𝑤 bits

❖ Implements Modular Arithmetic

▪ UMultw(u , v)= u · v mod 2w
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Multiplication with shift and add

❖ Operation  u<<k gives  u*2k

▪ Both signed and unsigned

❖ Examples:
▪ u<<3 == u * 8

▪ u<<5 - u<<3 == u * 24

▪ Most machines shift and add faster than multiply
• Compiler generates this code automatically
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Number Representation Revisited

❖ What can we represent in one word?

▪ Signed and Unsigned Integers

▪ Characters (ASCII)

▪ Addresses

❖ How do we encode the following:

▪ Real numbers (e.g. 3.14159)

▪ Very large numbers (e.g. 6.02×1023)

▪ Very small numbers (e.g. 6.626×10-34)

▪ Special numbers (e.g. ∞, NaN)
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Floating Point Topics

❖ Fractional binary numbers

❖ IEEE floating-point standard

❖ Floating-point operations and rounding

❖ Floating-point in C

❖ There are many more details that 
we won’t cover

▪ It’s a 58-page standard…
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Representation of Fractions

❖ “Binary Point,” like decimal point, signifies boundary 
between integer and fractional parts:

Example 6-bit
representation:

❖ Example: 10.10102 = 1×21 + 1×2-1 + 1×2-3 = 2.62510

❖ Binary point numbers that match the 6-bit format 
above range from 0 (00.00002) to 3.9375 (11.11112) 
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Scientific Notation (Decimal)

❖ Normalized form:  exactly one digit (non-zero) to left 
of decimal point

❖ Alternatives to representing 1/1,000,000,000
▪ Normalized: 1.0×10-9

▪ Not normalized: 0.1×10-8,10.0×10-10
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6.0210 × 1023

radix (base)decimal point

mantissa exponent
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Scientific Notation (Binary)

❖ Computer arithmetic that supports this called floating 
point due to the “floating” of the binary point

▪ Declare such variable in C as float (or double)
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1.012 × 2-1

radix (base)binary point

exponentmantissa
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Scientific Notation Translation

❖ Convert from scientific notation to binary point
▪ Perform the multiplication by shifting the decimal until the exponent 

disappears

• Example:  1.0112×24 = 101102 = 2210

• Example:  1.0112×2-2 = 0.010112 = 0.3437510

❖ Convert from binary point to normalized scientific notation
▪ Distribute out exponents until binary point is to the right of a single digit

• Example:  1101.0012 = 1.1010012×23
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Floating Point Topics

❖ Fractional binary numbers

❖ IEEE floating-point standard

❖ Floating-point operations and rounding

❖ Floating-point in C

❖ There are many more details that 
we won’t cover

▪ It’s a 58-page standard…
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IEEE Floating Point

❖ IEEE 754 
▪ Established in 1985 as uniform standard for floating point arithmetic

▪ Main idea: make numerically sensitive programs portable

▪ Specifies two things: representation and result of floating operations

▪ Now supported by all major CPUs

❖ Driven by numerical concerns
▪ Scientists/numerical analysts want them to be as real as possible

▪ Engineers want them to be easy to implement and fast

▪ In the end:

• Scientists mostly won out

• Nice standards for rounding, overflow, underflow, but...

• Hard to make fast in hardware

• Float operations can be an order of magnitude slower than integer ops
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Floating Point Encoding

❖ Use normalized, base 2 scientific notation:

▪ Value: ±1 × Mantissa × 2Exponent

▪ Bit Fields: (-1)S × 1.M × 2(E–bias)

❖ Representation Scheme:

▪ Sign bit (0 is positive, 1 is negative)

▪ Mantissa (a.k.a. significand) is the fractional part of the 
number in normalized form and encoded in bit vector M

▪ Exponent weights the value by a (possibly negative) power 
of 2 and encoded in the bit vector E
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S E M
31 30 23 22 0

1 bit 8 bits 23 bits
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The Exponent Field

❖ Use biased notation

▪ Read exponent as unsigned, but with bias of 2w-1-1 = 127

▪ Representable exponents roughly ½ positive and ½ negative

▪ Exponent 0 (Exp = 0) is represented as E = 0b 0111 1111

❖ Why biased?

▪ Makes floating point arithmetic easier

▪ Makes somewhat compatible with two’s complement

❖ Practice:  To encode in biased notation, add the bias then 
encode in unsigned:

▪ Exp = 1 → → E = 0b 

▪ Exp = 127 → → E = 0b 

▪ Exp = -63 → → E = 0b 
14
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The Mantissa (Fraction) Field

❖ Note the implicit 1 in front of the M bit vector

▪ Example:  0b 0011 1111 1100 0000 0000 0000 0000 0000
is read as  1.12 = 1.510, not 0.12 = 0.510

▪ Gives us an extra bit of precision

❖ Mantissa “limits”

▪ Low values near M = 0b0…0 are close to 2Exp

▪ High values near M = 0b1…1 are close to 2Exp+1
15

(-1)S x (1 . M) x 2(E–bias)

S E M
31 30 23 22 0

1 bit 8 bits 23 bits
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Peer Instruction Question

❖ What is the correct value encoded by the following 
floating point number?

▪ 0b  0  10000000  11000000000000000000000

A. + 0.75

B. + 1.5

C. + 2.75

D. + 3.5

E. We’re lost…
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Precision and Accuracy

❖ Precision is a count of the number of bits in a 
computer word used to represent a value

▪ Capacity for accuracy

❖ Accuracy is a measure of the difference between the 
actual value of a number and its computer 
representation

▪ High precision permits high accuracy but doesn’t guarantee 
it.  It is possible to have high precision but low accuracy.

▪ Example: float pi = 3.14;

• pi will be represented using all 24 bits of the mantissa (highly 
precise), but is only an approximation (not accurate)
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Need Greater Precision?

❖ Double Precision (vs. Single Precision) in 64 bits

▪ C variable declared as double

▪ Exponent bias is now 210–1 = 1023

▪ Advantages: greater precision (larger mantissa), 
greater range (larger exponent)

▪ Disadvantages: more bits used,
slower to manipulate
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S E (11) M (20 of 52)
63 62 52 51 32

M (32 of 52)
31 0
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Representing Very Small Numbers

❖ But wait… what happened to zero?

▪ Using standard encoding 0x00000000 = 

▪ Special case: E and M all zeros = 0
• Two zeros!  But at least 0x00000000 = 0 like integers

❖ New numbers closest to 0:

▪ a = 1.0…02×2-126 = 2-126

▪ b = 1.0…012×2-126 = 2-126 + 2-149

▪ Normalization and implicit 1 are to blame

▪ Special case: E = 0, M ≠ 0 are denormalized numbers
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0
+∞-∞

Gaps!

a

b
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Other Special Cases

❖ E = 0xFF, M = 0:  ± ∞

▪ e.g. division by 0

▪ Still work in comparisons!

❖ E = 0xFF, M ≠ 0:  Not a Number (NaN)

▪ e.g. square root of negative number, 0/0, ∞–∞

▪ NaN propagates through computations

▪ Value of M can be useful in debugging

❖ New largest value (besides ∞)?

▪ E = 0xFF has now been taken!

▪ E = 0xFE has largest:  1.1…12×2127 = 2128 – 2104
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Summary

❖ Floating point approximates real numbers:

▪ Handles large numbers, small numbers, special numbers

▪ Exponent in biased notation (bias = 2w-1–1)
• Outside of representable exponents is overflow and underflow

▪ Mantissa approximates fractional portion of binary point
• Implicit leading 1 (normalized) except in special cases

• Exceeding length causes rounding
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S E (8) M (23)
31 30 23 22 0

Exponent Mantissa Meaning
0x00 0 ± 0
0x00 non-zero ± denorm num

0x01 – 0xFE anything ± norm num
0xFF 0 ± ∞
0xFF non-zero NaN
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Floating point topics

❖ Fractional binary numbers

❖ IEEE floating-point standard

❖ Floating-point operations and rounding

❖ Floating-point in C

❖ There are many more details that 
we won’t cover

▪ It’s a 58-page standard…
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Distribution of Values

❖ What ranges are NOT representable?

▪ Between largest norm and infinity

▪ Between zero and smallest denorm

▪ Between norm numbers?

❖ Given a FP number, what’s the bit pattern of the next 
largest representable number?

▪ What is this “step” when Exp = 0?

▪ What is this “step” when Exp = 100?

❖ Distribution of values is denser toward zero

23

-15 -10 -5 0 5 10 15
Denormalized Normalized Infinity

Overflow

Underflow

Rounding
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Floating Point Operations:  Basic Idea

❖ x +f y = Round(x + y)

❖ x *f y = Round(x * y)

❖ Basic idea for floating point operations:

▪ First, compute the exact result

▪ Then round the result to make it fit into desired precision:
• Possibly over/underflow if exponent outside of range

• Possibly drop least-significant bits of mantissa to fit into M bit vector

24

S E M

Value = (-1)S×Mantissa×2Exponent
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Floating Point Addition

❖ (-1)S1×Man1×2Exp1 +  (-1)S2×Man2×2Exp2

▪ Assume Exp1 > Exp2

❖ Exact Result:  (-1)S×Man×2Exp

▪ Sign S, mantissa Man: 
• Result of signed align & add

▪ Exponent E:  E1

❖ Adjustments:

▪ If Man ≥ 2, shift Man right, increment Exp

▪ If Man < 1, shift Man left 𝑘 positions, decrement Exp by 𝑘

▪ Over/underflow if Exp out of range

▪ Round Man to fit mantissa precision
25

(-1)S1 Man1

(-1)S2 Man2 

Exp1–Exp2

+

(-1)S Man

Line up the binary points!

1.010*22

+ 1.000*2-1

???

1.0100*22

+ 0.0010*22

1.0110*22
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Floating Point Multiplication

❖ (-1)S1×Man1×2Exp1 × (-1)S2×Man2×2Exp2

❖ Exact Result: (-1)S×M×2E

▪ Sign S: S1 ^ S2

▪ Mantissa Man: Man1 × Man2

▪ Exponent Exp: Exp1 + Exp2

❖ Adjustments:

▪ If Man ≥ 2, shift Man right, increment Exp

▪ Over/underflow if Exp out of range

▪ Round Man to fit mantissa precision
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Mathematical Properties of FP Operations

❖ Exponent overflow yields +∞ or -∞

❖ Floats with value +∞, -∞, and NaN can be used in 
operations

▪ Result usually still +∞, -∞, or NaN; but not always intuitive

❖ Floating point operations do not work like real math, 
due to rounding

▪ Not associative: (3.14+1e100)–1e100 != 3.14+(1e100–1e100)
0 3.14

▪ Not distributive: 100*(0.1+0.2) !=  100*0.1+100*0.2

30.000000000000003553 30

▪ Not cumulative
• Repeatedly adding a very small number to a large one may do nothing
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Floating point topics

❖ Fractional binary numbers

❖ IEEE floating-point standard

❖ Floating-point operations and rounding

❖ Floating-point in C

❖ There are many more details that 
we won’t cover

▪ It’s a 58-page standard…
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Floating Point in C

❖ C offers two (well, 3) levels of precision
float 1.0f   single precision (32-bit)

double 1.0    double precision (64-bit)

long double  1.0L   (“double double” or quadruple)
precision (64-128 bits)

❖ #include <math.h> to get INFINITY and NAN
constants

❖ Equality (==) comparisons between floating point 
numbers are tricky, and often return unexpected 
results, so just avoid them!

29
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Floating Point Conversions in C

❖ Casting between int, float, and double changes
the bit representation
▪ int → float

• May be rounded (not enough bits in mantissa: 23)

• Overflow impossible

▪ int or float → double

• Exact conversion (all 32-bit ints representable)

▪ long → double

• Depends on word size (32-bit is exact, 64-bit may be rounded)

▪ double or float → int

• Truncates fractional part (rounded toward zero)

• “Not defined” when out of range or NaN:  generally sets to Tmin
(even if the value is a very big positive)

30
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Number Representation Really Matters

❖ 1991: Patriot missile targeting error
▪ clock skew due to conversion from integer to floating point

❖ 1996: Ariane 5 rocket exploded  ($1 billion)
▪ overflow converting 64-bit floating point to 16-bit integer

❖ 2000: Y2K problem
▪ limited (decimal) representation: overflow, wrap-around

❖ 2038: Unix epoch rollover
▪ Unix epoch = seconds since 12am, January 1, 1970

▪ signed 32-bit integer representation rolls over to TMin in 2038

❖ Other related bugs:
▪ 1982: Vancouver Stock Exchange 10% error in less than 2 years

▪ 1994: Intel Pentium FDIV (floating point division) HW bug ($475 million)

▪ 1997: USS Yorktown “smart” warship stranded: divide by zero

▪ 1998: Mars Climate Orbiter crashed: unit mismatch ($193 million)
31
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Floating Point Summary

❖ Floats also suffer from the fixed number of bits 
available to represent them 
▪ Can get overflow/underflow

▪ “Gaps” produced in representable numbers means we can 
lose precision, unlike ints
• Some “simple fractions” have no exact representation (e.g. 0.2)

• “Every operation gets a slightly wrong result”

❖ Floating point arithmetic not associative or 
distributive
▪ Mathematically equivalent ways of writing an expression 

may compute different results

❖ Never test floating point values for equality!

❖ Careful when converting between ints and floats!
32
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Floating Point Summary

❖ Converting between integral and floating point data 
types does change the bits 

▪ Floating point rounding is a HUGE issue!
• Limited mantissa bits cause inaccurate representations

• Floating point arithmetic is NOT associative or distributive
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Denorm Numbers

❖ Denormalized numbers

▪ No leading 1

▪ Uses implicit exponent of –126 even though E = 0x00

❖ Denormalized numbers close the gap between zero 
and the smallest normalized number

▪ Smallest norm: ± 1.0…0two×2-126 = ± 2-126

▪ Smallest denorm: ± 0.0…01two×2-126 = ± 2-149

• There is still a gap between zero and the smallest denormalized
number

34

So much
closer to 0

This is extra 
(non-testable) 

material
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Floating Point and the Programmer

35

#include <stdio.h>

int main(int argc, char* argv[]) {

float f1 = 1.0;

float f2 = 0.0;

int i;

for (i = 0; i < 10; i++)

f2 += 1.0/10.0;

printf("0x%08x 0x%08x\n", *(int*)&f1, *(int*)&f2);

printf("f1 = %10.9f\n", f1);

printf("f2 = %10.9f\n\n", f2);

f1 = 1E30;

f2 = 1E-30;

float f3 = f1 + f2;

printf("f1 == f3? %s\n", f1 == f3 ? "yes" : "no" );

return 0;

}

$ ./a.out

0x3f800000  0x3f800001

f1 = 1.000000000

f2 = 1.000000119

f1 == f3? yes
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An example that applies the IEEE Floating Point 
concepts to a smaller (8-bit) representation scheme.
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Tiny Floating Point Example

❖ 8-bit Floating Point Representation

▪ The sign bit is in the most significant bit (MSB)

▪ The next four bits are the exponent, with a bias of 24-1–1 = 7

▪ The last three bits are the mantissa

❖ Same general form as IEEE Format

▪ Normalized binary scientific point notation

▪ Similar special cases for 0, denormalized numbers, NaN, ∞

37

s exp man

1 4 3
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Dynamic Range (Positive Only)

38

S E    M Exp Value

0 0000 000 -6 0

0 0000 001 -6 1/8*1/64 = 1/512

0 0000 010 -6 2/8*1/64 = 2/512

…

0 0000 110 -6 6/8*1/64 = 6/512

0 0000 111 -6 7/8*1/64 = 7/512

0 0001 000 -6 8/8*1/64 = 8/512

0 0001 001  -6 9/8*1/64 = 9/512

…

0 0110 110 -1 14/8*1/2 = 14/16

0 0110 111 -1 15/8*1/2 = 15/16

0 0111 000 0 8/8*1    = 1

0 0111 001 0 9/8*1    = 9/8

0 0111 010 0 10/8*1   = 10/8

…

0 1110 110 7 14/8*128 = 224

0 1110 111 7 15/8*128 = 240

0 1111 000 n/a inf

closest to zero

largest denorm
smallest norm

closest to 1 below

closest to 1 above

largest norm

Denormalized
numbers

Normalized
numbers
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Special Properties of Encoding

❖ Floating point zero (0+) exactly the same bits as integer zero
▪ All bits = 0

❖ Can (Almost) Use Unsigned Integer Comparison
▪ Must first compare sign bits

▪ Must consider 0- = 0+ = 0

▪ NaNs problematic

• Will be greater than any other values

• What should comparison yield?

▪ Otherwise OK

• Denorm vs. normalized

• Normalized vs. infinity
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