YA UNIVERSITY of WASHINGTON L06: Floating Point CSE351, Winter 2018

Floating Point

CSE 351 Winter 2018

Instructor:
Mark Wyse

Teaching Assistants:
Kevin Bi Parker, DeWilde, Emily Furst,
Sarah House, Waylon Huang, Vinny Palaniappan

PP I . 1,306... 1,307... e 32/767...-32,768...| |...-32,767...-32,766...

BAAA BARA » Baa BAAMA Baan
CHN e fEE P
& AN A A e

http://xkcd.com/571/

http://xkcd.com/257/

YW UNIVERSITY of WASHINGTON L06: Floating Point

Administrivia

+ Lab 1 due Friday (1/19)

" Submitbits.candpointer.c

+» Homework 2 out since 1/15, due 1/24
" On Integers, Floating Point, and x86-64

YA UNIVERSITY of WASHINGTON L06: Floating Point CSE351, Winter 2018

Unsigned Multiplication in C

u eo o
Operands:
w bits . —
True Product: — —
2w bits
Discard w bits: UMult, (u , v) oo
w bits

+ Standard Multiplication Function

= |gnores high order w bits

+ Implements Modular Arithmetic
= UMult,(u, v)=u-v mod 2"

YW UNIVERSITY of WASHINGTON L06: Floating Point

Multiplication with shift and add

+» Operation u<<k gives u*2k

" Both signed and unsigned

CSE351, Winter 2018

u ° o
Operands: w bits k
x 2k [0] eee JO|1]O] eee |O|OD
True Product: w + k bits u - 2k oo 0] eee |0]O
Discard k bits: w bits UMult,(u,2%) [eee 0] eee |0OJO

TMult, (u , 2¥)
+» Examples:
" <<3 == u * 8
Bu<<h - uk3 == u * 24

" Most machines shift and add faster than multiply
- Compiler generates this code automatically

YA UNIVERSITY of WASHINGTON L06: Floating Point CSE351, Winter 2018

Number Representation Revisited

+» What can we represent in one word?
= Signed and Unsigned Integers
= Characters (ASCII)
= Addresses

+» How do we encode the following:
= Real numbers (e.g. 3.14159)
= Very large numbers (e.g. 6.02x1023) Floating
= Very small numbers (e.g. 6.626x10734) B Point
= Special numbers (e.g. ==, NaN)

YA UNIVERSITY of WASHINGTON LO6: Floating Point

Floating Point Topics

» Fractional binary numbers

» |EEE floating-point standard
+ Floating-point operations and rounding
» Floating-point in C

+» There are many more details that
we won'’t cover

" |t’s a 58-page standard...

CSE351, Winter 2018

YA UNIVERSITY of WASHINGTON L06: Floating Point CSE351, Winter 2018

Representation of Fractions

« “Binary Point,” like decimal point, signifies boundary
between integer and fractional parts:

Example 6-bit /X/X \;V{l y\\

representation: 20 91 52 53

+» Example: 10.1010, = 1x21 + 1x21 + 1x23 = 2.625,,

% Binary point numbers that match the 6-bit format
above range from 0 (00.0000,) to 3.9375 (11.1111,)

YA UNIVERSITY of WASHINGTON L06: Floating Point CSE351, Winter 2018

Scientific Notation (Decimal)

mantissa exponent
/
T~6.02,, x 1023

I N\

decimal point radix (base)

+» Normalized form: exactly one digit (non-zero) to left
of decimal point

+ Alternatives to representing 1/1,000,000,000
= Normalized: 1.0x107
= Not normalized: 0.1x10%,10.0x1010

YA UNIVERSITY of WASHINGTON L06: Floating Point CSE351, Winter 2018

Scientific Notation (Binary)

mantissa exponent
/
T>1.01, x 21

I N\

binary point radix (base)

+» Computer arithmetic that supports this called floating
point due to the “floating” of the binary point

= Declare such variable in Cas £loat (or double)

YA UNIVERSITY of WASHINGTON L06: Floating Point CSE351, Winter 2018

Scientific Notation Translation

+» Convert from scientific notation to binary point

= Perform the multiplication by shifting the decimal until the exponent
disappears

. Example: 1.011,x24=10110, = 22,,
. Example: 1.011,X22=0.01011, = 0.34375,,

+~ Convert from binary point to normalized scientific notation

= Distribute out exponents until binary point is to the right of a single digit
- Example: 1101.001, = 1.101001,x23

10

YA UNIVERSITY of WASHINGTON LO6: Floating Point

Floating Point Topics

» Fractional binary numbers

» |EEE floating-point standard
+ Floating-point operations and rounding
» Floating-point in C

+» There are many more details that
we won'’t cover

" |t’s a 58-page standard...

CSE351, Winter 2018

11

YA UNIVERSITY of WASHINGTON L06: Floating Point CSE351, Winter 2018

IEEE Floating Point

0

IEEE 754

Established in 1985 as uniform standard for floating point arithmetic
"= Main idea: make numerically sensitive programs portable

= Specifies two things: representation and result of floating operations
= Now supported by all major CPUs

Driven by numerical concerns

= Scientists/numerical analysts want them to be as real as possible
= Engineers want them to be easy to implement and fast
" |n the end:

- Scientists mostly won out

Nice standards for rounding, overflow, underflow, but...
Hard to make fast in hardware

- Float operations can be an order of magnitude slower than integer ops

12

YW UNIVERSITY of WASHINGTON L06: Floating Point

CSE351, Winter 2018

Floating Point Encoding

«» Use normalized, base 2 scientific notation:
= Value: +1 x Mantissa x 2Fxponent
= Bijt Fields: (-1)° x 1.M x 2(E-bias)

+» Representation Scheme:
= Sign bit (O is positive, 1 is negative)

= Mantissa (a.k.a. significand) is the fractional part of the
number in normalized form and encoded in bit vector M

" Exponent weights the value by a (possibly negative) power
of 2 and encoded in the bit vector E

31 30 23 22
S| & | M

1 bit 8 bits 23 bits

°

13

YA UNIVERSITY of WASHINGTON L06: Floating Point CSE351, Winter 2018

The Exponent Field

+» Use biased notation
= Read exponent as unsigned, but with bias of 2¥1-1 = 127
= Representable exponents roughly % positive and %2 negative
" Exponent O (Exp =0)is represented as E=0b 0111 1111

+» Why biased?
" Makes floating point arithmetic easier
= Makes somewhat compatible with two’s complement

» Practice: To encode in biased notation, add the bias then
encode in unsigned:
" Exp=1 - - E=0b
" Exp=127 - - E=0Db
" Exp=-63 — - E=0b

14

YA UNIVERSITY of WASHINGTON L06: Floating Point CSE351, Winter 2018

The Mantissa (Fraction) Field

3130 23 22 0
s e T M]
1 bit 8 bits 23 bits

(-1)° x (1 . M) x 2(E-bias)

» Note the implicit 1 in front of the M bit vector

= Example: Ob 0011 1111 1100 0000 0000 0000 0000 0000
isreadas 1.1,=1.5,,, not 0.1,=0.5,,

= Gives us an extra bit of precision

» Mantissa “limits”
= |ow values near M = 0b0...0 are close to 2t
= High values near M = 0b1...1 are close to 2t*P*!

15

YA UNIVERSITY of WASHINGTON L06: Floating Point CSE351, Winter 2018

Peer Instruction Question

« What is the correct value encoded by the following
floating point number?

= Ob O 10000000 11000000000000000000000

+1.5

+2.75

+ 3.5

We're lost...

m O O ® >

16

YA UNIVERSITY of WASHINGTON L06: Floating Point CSE351, Winter 2018

Precision and Accuracy

« Precision is a count of the number of bits in a
computer word used to represent a value
= Capacity for accuracy

% Accuracy is a measure of the difference between the
actual value of a number and its computer
representation

= High precision permits high accuracy but doesn’t guarantee
it. It is possible to have high precision but low accuracy.

= Example: float pi = 3.14;

- pi will be represented using all 24 bits of the mantissa (highly
precise), but is only an approximation (not accurate)

17

YA UNIVERSITY of WASHINGTON L06: Floating Point CSE351, Winter 2018

Need Greater Precision?

+ Double Precision (vs. Single Precision) in 64 bits

63 62 5251 32
E(11) | M (20 of 52) b

31 0

M (32 of 52) 1

= Cvariable declared as double
= Exponent bias is now 21%-1 = 1023

= Advantages: greater precision (larger mantissa),
greater range (larger exponent)

= Disadvantages: more bits used,
slower to manipulate

18

YW UNIVERSITY of WASHINGTON L06: Floating Point

Representing Very Small Numbers

+» But wait... what happened to zero?

= Using standard encoding 0x00000000 =

= Special case: Eand M all zeros =0
- Two zeros! But at least 0x00000000 = 0 like integers

+» New numbers closest to O: Gaps! P
= a=1.0..0,x2126 = 2-126 -00 !
® b=1.0..01,x2126 = 2126 4 2-149 0!

" Normalization and implicit 1 are to blame

= Special case: E =0, M # 0 are denormalized numbers

CSE351, Winter 2018

19

YA UNIVERSITY of WASHINGTON L06: Floating Point CSE351, Winter 2018

Other Special Cases

« E=0xFF, M =0: £ o0
= e.g. division by 0
= Still work in comparisons!
+» E=0xFF, M # 0: Not a Number (NaN)
= e.g. square root of negative number, 0/0, co—co
= NaN propagates through computations

= Value of M can be useful in debugging

+ New largest value (besides oo)?

" E = OxFF has now been taken!
" E =O0xFE has largest: 1.1...1,x21%7 = 2128 — 3104

20

YW UNIVERSITY of WASHINGTON

LO6: Floating Point

CSE351, Winter 2018

Summary

+ Floating point approximates real numbers:
3130 2322

E(8) | M (23)

®= Handles large numbers, small numbers, special numbers
= Exponent in biased notation (bias = 2%-1-1)
- Outside of representable exponents is overflow and underflow

" Mantissa approximates fractional portion of binary point

- Implicit leading 1 (normalized) except in special cases
- Exceeding length causes rounding

—°

Exponent Mantissa Meaning
0x00 0 +0
0x00 non-zero + denorm num
Ox01 — OxFE anything + norm num
OxFF 0) t oo
OxFF non-zero NaN

21

YA UNIVERSITY of WASHINGTON LO6: Floating Point

Floating point topics

» Fractional binary numbers

» |EEE floating-point standard
+ Floating-point operations and rounding
» Floating-point in C

+» There are many more details that
we won'’t cover

" |t’s a 58-page standard...

CSE351, Winter 2018

22

Distribution of Values

+» What ranges are NOT representable?
= Between largest norm and infinity Overflow

= Between zero and smallest denorm Underflow
= Between norm numbers? Rounding

% Given a FP number, what’s the bit pattern of the next
largest representable number?

= What is this “step” when Exp =07
= What is this “step” when Exp = 1007?

4

« Distribution of values is denser toward zero

Kk A A A A A A AAAAMMMEBMM A A AL A A A A A A A—

-15 -10 -5 0 5 10 15
¢ Denormalized A Normalized Infinity

YA UNIVERSITY of WASHINGTON L06: Floating Point CSE351, Winter 2018

23

YA UNIVERSITY of WASHINGTON L06: Floating Point CSE351, Winter 2018

Floating Point Operations: Basic Idea

Value = (-1) " xMantissax2txponent

E M
¢+ X + vy = Round(x + V)
¢+ X *. y = Round(x * vy)

+ Basic idea for floating point operations:
" First, compute the exact result

" Then round the result to make it fit into desired precision:
 Possibly over/underflow if exponent outside of range
- Possibly drop least-significant bits of mantissa to fit into M bit vector

24

YA UNIVERSITY of WASHINGTON L06: Floating Point CSE351, Winter 2018

Floating Point Addition | Line upthe binary points!

2 (-1)°1xMan1x2Bpl + (-1)>?xMan2x2&xp?

= Assume Expl > Exp2 1.010%*27 1.0100%*2°
+ 1.000%2°1 + 0.0010%*2?
2
» Exact Result: (-1)°xManx2&® et 1011072
= Sign S, mantissa Man: [Exp1-Exp2 —]
- Result of signed align & add (-1)°*' Manl
-1)S2
= Exponent E: E1 t (-1)>> Man2
(-1)°> Man

+» Adjustments:
" |f Man = 2, shift Man right, increment Exp
= |f Man < 1, shift Man left k positions, decrement Exp by k
= QOver/underflow if Exp out of range
= Round Man to fit mantissa precision

25

YW UNIVERSITY of WASHINGTON L06: Floating Point

Floating Point Multiplication

oo (-1)51)(|\/|an]_szXp1 X (_1)52)(Man2x2Exp2

+» Exact Result: (-1)>xMx2F
= Sign S: S1/7S2
" Mantissa Man: Manl x Man2
" Exponent Exp: Expl+ Exp2

% Adjustments:

"= |f Man 2 2, shift Man right, increment Exp
= QOver/underflow if Exp out of range
= Round Man to fit mantissa precision

CSE351, Winter 2018

26

YA UNIVERSITY of WASHINGTON L06: Floating Point CSE351, Winter 2018

Mathematical Properties of FP Operations

+ Exponent overflow yields +e< or -0

+» Floats with value +oo, -co, and NaN can be used in
operations
= Result usually still +eo, -0, or NaN; but not always intuitive
+ Floating point operations do not work like real math,
due to rounding

= Not associative: (3.14+1e100)-1e100 != 3.14+(1el00-1e100)

0 3.14
= Not distributive: 100*(0.140.2) !'= 100%0.1+100%0.2
30.000000000000003553 30

= Not cumulative
- Repeatedly adding a very small number to a large one may do nothing

27

YA UNIVERSITY of WASHINGTON LO6: Floating Point

Floating point topics

» Fractional binary numbers

» |EEE floating-point standard
+ Floating-point operations and rounding
» Floating-point in C

» There are many more details that
we won'’t cover

" |t’s a 58-page standard...

CSE351, Winter 2018

28

WA UNIVERSITY of WASHINGTON L06: Floating Point CSE351, Winter 2018

Floating Point in C ' I '
+ C offers two (well, 3) levels of precision

float 1.0f single precision (32-bit)

double 1.0 double precision (64-bit)

long double 1.0L (“double double” or quadruple)
precision (64-128 bits)

» #include <math.h> toget INFINITY and NAN
constants

+ Equality (==) comparisons between floating point
numbers are tricky, and often return unexpected
results, so just avoid them!

29

YA UNIVERSITY of WASHINGTON L06: Floating Point CSE351, Winter 2018

Floating Point Conversions in C | 11

+» Casting between int, float, and double changes
the bit representation

" Int —» float
- May be rounded (not enough bits in mantissa: 23)
- Overflow impossible
" Intorfloat — double
- Exact conversion (all 32-bit ints representable)
" long — double
- Depends on word size (32-bit is exact, 64-bit may be rounded)
" doubleorfloat — int

- Truncates fractional part (rounded toward zero)

- “Not defined” when out of range or NaN: generally sets to Tmin

(even if the value is a very big positive)
30

YA UNIVERSITY of WASHINGTON L06: Floating Point CSE351, Winter 2018

Number Representation Really Matters

L/
0‘0

1991: Patriot missile targeting error
" clock skew due to conversion from integer to floating point

+ 1996: Ariane 5 rocket exploded (S1 billion)

= overflow converting 64-bit floating point to 16-bit integer

2000: Y2K problem

= |imited (decimal) representation: overflow, wrap-around

*

L/
0‘0

L/
0‘0

2038: Unix epoch rollover
= Unix epoch = seconds since 12am, January 1, 1970

" signed 32-bit integer representation rolls over to TMin in 2038

Other related bugs:

= 1982:Vancouver Stock Exchange 10% error in less than 2 years

= 1994: Intel Pentium FDIV (floating point division) HW bug ($475 million)
= 1997: USS Yorktown “smart” warship stranded: divide by zero

= 1998: Mars Climate Orbiter crashed: unit mismatch ($193 million)

>

31

YA UNIVERSITY of WASHINGTON L06: Floating Point CSE351, Winter 2018

Floating Point Summary

« Floats also suffer from the fixed number of bits
available to represent them
= Can get overflow/underflow

= “Gaps” produced in representable numbers means we can
lose precision, unlike ints
- Some “simple fractions” have no exact representation (e.g. 0.2)
- “Every operation gets a slightly wrong result”

+» Floating point arithmetic not associative or
distributive

" Mathematically equivalent ways of writing an expression
may compute different results

+» Never test floating point values for equality!
+» Careful when converting between intsand floats!

32

YA UNIVERSITY of WASHINGTON L06: Floating Point CSE351, Winter 2018

Floating Point Summary

«» Converting between integral and floating point data
types does change the bits

" Floating point rounding is a HUGE issue!
- Limited mantissa bits cause inaccurate representations
- Floating point arithmetic is NOT associative or distributive

33

YA UNIVERSITY of WASHINGTON L06: Floating Point CSE351, Winter 2018

This is extra

Denorm Numbers (non-testable)

material

+» Denormalized numbers
" No leading 1
= Uses implicit exponent of =126 even though E = 0x00

+» Denormalized numbers close the gap between zero
and the smallest normalized number -
" Smallest norm: + 1.0...0,,,,x21° =+ 27126~ (5sert00
" Smallest denorm: + 0.0...01,,,,x271%° = + 2°149

- There is still a gap between zero and the smallest denormalized
number

34

YA UNIVERSITY of WASHINGTON

CSE351, Winter 2018

LO6: Floating Point

Floating Point and the Programmer

#include <stdio.h>

int main(int argc,

char* argvl[])

float £f1 = 1.0;

float £2 = 0.0;

int 1i;

for (1 = 0; 1 < 10; 1i++)

f2 += 1.0/10.0;

printf ("0x%08x

printf("f1 = %10.9f\n", £f1);
printf("f2 = %$10.9f\n\n", £2);
f1 = 1E30;

f2 = 1E-30;

float £3 = f1 + £2;

printf ("fl == £3? %s\n", fl ==

return 0O;

0x%08x\n",

{

(1nt) &fl,

£f3 72

$./a.out
O0x3£800000
f1 = 1.000
f2 = 1.000

f1 == £37?

0x3£800001
000000
000119

yes

w yeS"

(1nt) &f£2);

"nO")’.

35

WA UNIVERSITY of WASHINGTON L06: Floating Point CSE351, Winter 2018

BONUS SLIDES

An example that applies the IEEE Floating Point
concepts to a smaller (8-bit) representation scheme.

36

YA UNIVERSITY of WASHINGTON L06: Floating Point CSE351, Winter 2018

Tiny Floating Point Example

s | exp man

1 4 3

+» 8-bit Floating Point Representation
" The sign bit is in the most significant bit (MSB)
® The next four bits are the exponent, with a bias of 241-1 =7
"= The last three bits are the mantissa

+» Same general form as IEEE Format
®= Normalized binary scientific point notation
= Similar special cases for 0, denormalized numbers, NaN, oo

37

YW UNIVERSITY of WASHINGTON

LO6: Floating Point

Dynamic Range (Positive Only)

Denormalized

numbers

Normalized
numbers

S

O OO OoOOo: OO o o:

O O

E M

0000 000
0000 001
0000 010

0000 110
0000 111
0001 000
0001 001

0110 110
0110 111
0111 000
0111 001
0111 010

1110 110
1110 111
1111 000

Exp

n/a

Value

0

1/8*1/64 =
2/8*1/64 =

6/8*1/64 =
7/8*1/64 =
8/8*1/64 =
9/8*1/64 =

14/8*1/2 =
15/8*1/2 =

8/8*1
9/8*1
10/8*1

14/8*128 =
15/8*128 =

inf

1/512
2/512

6/512
7/512
8/512
9/512

14/16
15/16

= 9/8
= 10/8

224
240

CSE351, Winter 2018

closest to zero

largest denorm
smallest norm

closest to 1 below

closest to 1 above

largest norm

38

YA UNIVERSITY of WASHINGTON L06: Floating Point CSE351, Winter 2018

Special Properties of Encoding

+ Floating point zero (0*) exactly the same bits as integer zero
= All bits=0

+ Can (Almost) Use Unsigned Integer Comparison
" Must first compare sign bits
= Must consider0-=0*=0
= NaNs problematic

- Will be greater than any other values
« What should comparison yield?

= Otherwise OK
« Denorm vs. normalized
« Normalized vs. infinity

39

