
1

CSE351, Winter 2018L06: Floating Point

Floating Point
CSE 351 Winter 2018

Instructor:

Mark Wyse

Teaching Assistants:

Kevin Bi Parker, DeWilde, Emily Furst,

Sarah House, Waylon Huang, Vinny Palaniappan

http://xkcd.com/571/

CSE351, Winter 2018L06: Floating Point

Administrivia

 Lab 1 due Friday (1/19)

 Submit bits.c and pointer.c

 Homework 2 out since 1/15, due 1/24

 On Integers, Floating Point, and x86-64

2

CSE351, Winter 2018L06: Floating Point

Unsigned Multiplication in C

 Standard Multiplication Function

 Ignores high order 𝑤 bits

 Implements Modular Arithmetic

 UMultw(u , v)= u · v mod 2w

3

• • •

• • •

u

v
*

• • •u · v

• • •

True Product:
𝟐𝒘 bits

Operands:
𝒘 bits

Discard 𝑤 bits:
𝒘 bits

UMultw(u , v)

• • •

CSE351, Winter 2018L06: Floating Point

Multiplication with shift and add

 Operation u<<k gives u*2k

 Both signed and unsigned

 Examples:
 u<<3 == u * 8

 u<<5 - u<<3 == u * 24

 Most machines shift and add faster than multiply
• Compiler generates this code automatically

4

• • •u

2k
*

u · 2kTrue Product: 𝒘+ 𝒌 bits

Operands: 𝒘 bits

Discard 𝑘 bits: 𝒘 bits UMultw(u , 2k)

0 0 1 0 0 0••• •••
k

• • • 0 0 0•••

TMultw(u , 2k)
0 0 0••••••

CSE351, Winter 2018L06: Floating Point

Number Representation Revisited

 What can we represent in one word?

 Signed and Unsigned Integers

 Characters (ASCII)

 Addresses

 How do we encode the following:

 Real numbers (e.g. 3.14159)

 Very large numbers (e.g. 6.02×1023)

 Very small numbers (e.g. 6.626×10-34)

 Special numbers (e.g. ∞, NaN)

5

Floating
Point

CSE351, Winter 2018L06: Floating Point

Floating Point Topics

 Fractional binary numbers

 IEEE floating-point standard

 Floating-point operations and rounding

 Floating-point in C

 There are many more details that
we won’t cover

 It’s a 58-page standard…

6

http://xkcd.com/257/

2

CSE351, Winter 2018L06: Floating Point

Representation of Fractions

 “Binary Point,” like decimal point, signifies boundary
between integer and fractional parts:

Example 6-bit
representation:

 Example: 10.10102 = 1×21 + 1×2-1 + 1×2-3 = 2.62510

 Binary point numbers that match the 6-bit format
above range from 0 (00.00002) to 3.9375 (11.11112)

7

xx.yyyy

21
20 2-1

2-2 2-3 2-4

CSE351, Winter 2018L06: Floating Point

Scientific Notation (Decimal)

 Normalized form: exactly one digit (non-zero) to left
of decimal point

 Alternatives to representing 1/1,000,000,000
 Normalized: 1.0×10-9

 Not normalized: 0.1×10-8,10.0×10-10

8

6.0210 × 1023

radix (base)decimal point

mantissa exponent

CSE351, Winter 2018L06: Floating Point

Scientific Notation (Binary)

 Computer arithmetic that supports this called floating
point due to the “floating” of the binary point

 Declare such variable in C as float (or double)

9

1.012 × 2-1

radix (base)binary point

exponentmantissa

CSE351, Winter 2018L06: Floating Point

Scientific Notation Translation

 Convert from scientific notation to binary point to decimal
 Perform the multiplication by shifting the decimal until the exponent

disappears

• Example: 1.0112×24 = 101102 = 2210

• Example: 1.0112×2-2 = 0.010112 = 0.3437510

 Convert from binary point to normalized scientific notation
 Distribute out exponents until binary point is to the right of a single digit

• Example: 1101.0012 = 1.1010012×23

10

CSE351, Winter 2018L06: Floating Point

Floating Point Topics

 Fractional binary numbers

 IEEE floating-point standard

 Floating-point operations and rounding

 Floating-point in C

 There are many more details that
we won’t cover

 It’s a 58-page standard…

11

CSE351, Winter 2018L06: Floating Point

IEEE Floating Point

 IEEE 754
 Established in 1985 as uniform standard for floating point arithmetic

 Main idea: make numerically sensitive programs portable

 Specifies two things: representation and result of floating operations

 Now supported by all major CPUs

 Driven by numerical concerns
 Scientists/numerical analysts want them to be as real as possible

 Engineers want them to be easy to implement and fast

 In the end:

• Scientists mostly won out

• Nice standards for rounding, overflow, underflow, but...

• Hard to make fast in hardware

• Float operations can be an order of magnitude slower than integer ops

12

3

CSE351, Winter 2018L06: Floating Point

Floating Point Encoding

 Use normalized, base 2 scientific notation:

 Value: ±1 × Mantissa × 2Exponent

 Bit Fields: (-1)S × 1.M × 2(E–bias)

 Representation Scheme:

 Sign bit (0 is positive, 1 is negative)

 Mantissa (a.k.a. significand) is the fractional part of the
number in normalized form and encoded in bit vector M

 Exponent weights the value by a (possibly negative) power
of 2 and encoded in the bit vector E

13

S E M
31 30 23 22 0

1 bit 8 bits 23 bits

CSE351, Winter 2018L06: Floating Point

The Exponent Field

 Use biased notation

 Read exponent as unsigned, but with bias of 2w-1-1 = 127

 Representable exponents roughly ½ positive and ½ negative

 Exponent 0 (Exp = 0) is represented as E = 0b 0111 1111

 Why biased?

 Makes floating point arithmetic easier

 Makes somewhat compatible with two’s complement

 Practice: To encode in biased notation, add the bias then
encode in unsigned:

 Exp = 1 → → E = 0b

 Exp = 127 → → E = 0b

 Exp = -63 → → E = 0b
14

CSE351, Winter 2018L06: Floating Point

The Mantissa (Fraction) Field

 Note the implicit 1 in front of the M bit vector

 Example: 0b 0011 1111 1100 0000 0000 0000 0000 0000
is read as 1.12 = 1.510, not 0.12 = 0.510

 Gives us an extra bit of precision

 Mantissa “limits”

 Low values near M = 0b0…0 are close to 2Exp

 High values near M = 0b1…1 are close to 2Exp+1
15

(-1)S x (1 . M) x 2(E–bias)

S E M
31 30 23 22 0

1 bit 8 bits 23 bits

CSE351, Winter 2018L06: Floating Point

Peer Instruction Question

 What is the correct value encoded by the following
floating point number?

 0b 0 10000000 11000000000000000000000

A. + 0.75

B. + 1.5

C. + 2.75

D. + 3.5

E. We’re lost…

16

CSE351, Winter 2018L06: Floating Point

Precision and Accuracy

 Precision is a count of the number of bits in a
computer word used to represent a value

 Capacity for accuracy

 Accuracy is a measure of the difference between the
actual value of a number and its computer
representation

 High precision permits high accuracy but doesn’t guarantee
it. It is possible to have high precision but low accuracy.

 Example: float pi = 3.14;

• pi will be represented using all 24 bits of the mantissa (highly
precise), but is only an approximation (not accurate)

17

CSE351, Winter 2018L06: Floating Point

Need Greater Precision?

 Double Precision (vs. Single Precision) in 64 bits

 C variable declared as double

 Exponent bias is now 210–1 = 1023

 Advantages: greater precision (larger mantissa),
greater range (larger exponent)

 Disadvantages: more bits used,
slower to manipulate

18

S E (11) M (20 of 52)
63 62 52 51 32

M (32 of 52)
31 0

4

CSE351, Winter 2018L06: Floating Point

Representing Very Small Numbers

 But wait… what happened to zero?

 Using standard encoding 0x00000000 =

 Special case: E and M all zeros = 0
• Two zeros! But at least 0x00000000 = 0 like integers

 New numbers closest to 0:

 a = 1.0…02×2-126 = 2-126

 b = 1.0…012×2-126 = 2-126 + 2-149

 Normalization and implicit 1 are to blame

 Special case: E = 0, M ≠ 0 are denormalized numbers

19

0
+∞-∞

Gaps!

a

b

CSE351, Winter 2018L06: Floating Point

Other Special Cases

 E = 0xFF, M = 0: ± ∞

 e.g. division by 0

 Still work in comparisons!

 E = 0xFF, M ≠ 0: Not a Number (NaN)

 e.g. square root of negative number, 0/0, ∞–∞

 NaN propagates through computations

 Value of M can be useful in debugging

 New largest value (besides ∞)?

 E = 0xFF has now been taken!

 E = 0xFE has largest: 1.1…12×2127 = 2128 – 2104

20

CSE351, Winter 2018L06: Floating Point

Summary

 Floating point approximates real numbers:

 Handles large numbers, small numbers, special numbers

 Exponent in biased notation (bias = 2w-1–1)
• Outside of representable exponents is overflow and underflow

 Mantissa approximates fractional portion of binary point
• Implicit leading 1 (normalized) except in special cases

• Exceeding length causes rounding

21

S E (8) M (23)
31 30 23 22 0

Exponent Mantissa Meaning
0x00 0 ± 0
0x00 non-zero ± denorm num

0x01 – 0xFE anything ± norm num
0xFF 0 ± ∞
0xFF non-zero NaN

CSE351, Winter 2018L06: Floating Point

Floating point topics

 Fractional binary numbers

 IEEE floating-point standard

 Floating-point operations and rounding

 Floating-point in C

 There are many more details that
we won’t cover

 It’s a 58-page standard…

22

CSE351, Winter 2018L06: Floating Point

Distribution of Values

 What ranges are NOT representable?

 Between largest norm and infinity

 Between zero and smallest denorm

 Between norm numbers?

 Given a FP number, what’s the bit pattern of the next
largest representable number?

 What is this “step” when Exp = 0?

 What is this “step” when Exp = 100?

 Distribution of values is denser toward zero

23

-15 -10 -5 0 5 10 15
Denormalized Normalized Infinity

Overflow

Underflow

Rounding

CSE351, Winter 2018L06: Floating Point

Floating Point Operations: Basic Idea

 x +f y = Round(x + y)

 x *f y = Round(x * y)

 Basic idea for floating point operations:

 First, compute the exact result

 Then round the result to make it fit into desired precision:
• Possibly over/underflow if exponent outside of range

• Possibly drop least-significant bits of mantissa to fit into M bit vector

24

S E M

Value = (-1)S×Mantissa×2Exponent

5

CSE351, Winter 2018L06: Floating Point

Floating Point Addition

 (-1)S1×Man1×2Exp1 + (-1)S2×Man2×2Exp2

 Assume Exp1 > Exp2

 Exact Result: (-1)S×Man×2Exp

 Sign S, mantissa Man:
• Result of signed align & add

 Exponent E: E1

 Adjustments:

 If Man ≥ 2, shift Man right, increment Exp

 If Man < 1, shift Man left 𝑘 positions, decrement Exp by 𝑘

 Over/underflow if Exp out of range

 Round Man to fit mantissa precision
25

(-1)S1 Man1

(-1)S2 Man2

Exp1–Exp2

+

(-1)S Man

Line up the binary points!

1.010*22

+ 1.000*2-1

???

1.0100*22

+ 0.0010*22

1.0110*22

CSE351, Winter 2018L06: Floating Point

Floating Point Multiplication

 (-1)S1×Man1×2Exp1 × (-1)S2×Man2×2Exp2

 Exact Result: (-1)S×M×2E

 Sign S: S1 ^ S2

 Mantissa Man: Man1 × Man2

 Exponent Exp: Exp1 + Exp2

 Adjustments:

 If Man ≥ 2, shift Man right, increment Exp

 Over/underflow if Exp out of range

 Round Man to fit mantissa precision

26

CSE351, Winter 2018L06: Floating Point

Mathematical Properties of FP Operations

 Exponent overflow yields +∞ or -∞

 Floats with value +∞, -∞, and NaN can be used in
operations

 Result usually still +∞, -∞, or NaN; but not always intuitive

 Floating point operations do not work like real math,
due to rounding

 Not associative: (3.14+1e100)–1e100 != 3.14+(1e100–1e100)
0 3.14

 Not distributive: 100*(0.1+0.2) != 100*0.1+100*0.2

30.000000000000003553 30

 Not cumulative
• Repeatedly adding a very small number to a large one may do nothing

27

CSE351, Winter 2018L06: Floating Point

Floating point topics

 Fractional binary numbers

 IEEE floating-point standard

 Floating-point operations and rounding

 Floating-point in C

 There are many more details that
we won’t cover

 It’s a 58-page standard…

28

CSE351, Winter 2018L06: Floating Point

Floating Point in C

 C offers two (well, 3) levels of precision
float 1.0f single precision (32-bit)

double 1.0 double precision (64-bit)

long double 1.0L (“double double” or quadruple)
precision (64-128 bits)

 #include <math.h> to get INFINITY and NAN

constants

 Equality (==) comparisons between floating point

numbers are tricky, and often return unexpected
results, so just avoid them!

29

!!!
CSE351, Winter 2018L06: Floating Point

Floating Point Conversions in C

 Casting between int, float, and double changes

the bit representation

 int → float

• May be rounded (not enough bits in mantissa: 23)

• Overflow impossible

 int or float → double

• Exact conversion (all 32-bit ints representable)

 long → double

• Depends on word size (32-bit is exact, 64-bit may be rounded)

 double or float → int

• Truncates fractional part (rounded toward zero)

• “Not defined” when out of range or NaN: generally sets to Tmin
(even if the value is a very big positive)

30

!!!

6

CSE351, Winter 2018L06: Floating Point

Number Representation Really Matters

 1991: Patriot missile targeting error
 clock skew due to conversion from integer to floating point

 1996: Ariane 5 rocket exploded ($1 billion)
 overflow converting 64-bit floating point to 16-bit integer

 2000: Y2K problem
 limited (decimal) representation: overflow, wrap-around

 2038: Unix epoch rollover
 Unix epoch = seconds since 12am, January 1, 1970

 signed 32-bit integer representation rolls over to TMin in 2038

 Other related bugs:
 1982: Vancouver Stock Exchange 10% error in less than 2 years

 1994: Intel Pentium FDIV (floating point division) HW bug ($475 million)

 1997: USS Yorktown “smart” warship stranded: divide by zero

 1998: Mars Climate Orbiter crashed: unit mismatch ($193 million)
31

CSE351, Winter 2018L06: Floating Point

Floating Point Summary

 Floats also suffer from the fixed number of bits
available to represent them
 Can get overflow/underflow

 “Gaps” produced in representable numbers means we can
lose precision, unlike ints
• Some “simple fractions” have no exact representation (e.g. 0.2)

• “Every operation gets a slightly wrong result”

 Floating point arithmetic not associative or
distributive
 Mathematically equivalent ways of writing an expression

may compute different results

 Never test floating point values for equality!

 Careful when converting between ints and floats!
32

CSE351, Winter 2018L06: Floating Point

Floating Point Summary

 Converting between integral and floating point data
types does change the bits

 Floating point rounding is a HUGE issue!
• Limited mantissa bits cause inaccurate representations

• Floating point arithmetic is NOT associative or distributive

33

CSE351, Winter 2018L06: Floating Point

Denorm Numbers

 Denormalized numbers

 No leading 1

 Uses implicit exponent of –126 even though E = 0x00

 Denormalized numbers close the gap between zero
and the smallest normalized number

 Smallest norm: ± 1.0…0two×2-126 = ± 2-126

 Smallest denorm: ± 0.0…01two×2-126 = ± 2-149

• There is still a gap between zero and the smallest denormalized
number

34

So much
closer to 0

This is extra
(non-testable)

material

CSE351, Winter 2018L06: Floating Point

Floating Point and the Programmer

35

#include <stdio.h>

int main(int argc, char* argv[]) {

float f1 = 1.0;

float f2 = 0.0;

int i;

for (i = 0; i < 10; i++)

f2 += 1.0/10.0;

printf("0x%08x 0x%08x\n", *(int*)&f1, *(int*)&f2);

printf("f1 = %10.9f\n", f1);

printf("f2 = %10.9f\n\n", f2);

f1 = 1E30;

f2 = 1E-30;

float f3 = f1 + f2;

printf("f1 == f3? %s\n", f1 == f3 ? "yes" : "no");

return 0;

}

$./a.out

0x3f800000 0x3f800001

f1 = 1.000000000

f2 = 1.000000119

f1 == f3? yes

CSE351, Winter 2018L06: Floating Point

An example that applies the IEEE Floating Point
concepts to a smaller (8-bit) representation scheme.

36

7

CSE351, Winter 2018L06: Floating Point

Tiny Floating Point Example

 8-bit Floating Point Representation

 The sign bit is in the most significant bit (MSB)

 The next four bits are the exponent, with a bias of 24-1–1 = 7

 The last three bits are the mantissa

 Same general form as IEEE Format

 Normalized binary scientific point notation

 Similar special cases for 0, denormalized numbers, NaN, ∞

37

s exp man

1 4 3

CSE351, Winter 2018L06: Floating Point

Dynamic Range (Positive Only)

38

S E M Exp Value

0 0000 000 -6 0

0 0000 001 -6 1/8*1/64 = 1/512

0 0000 010 -6 2/8*1/64 = 2/512

…

0 0000 110 -6 6/8*1/64 = 6/512

0 0000 111 -6 7/8*1/64 = 7/512

0 0001 000 -6 8/8*1/64 = 8/512

0 0001 001 -6 9/8*1/64 = 9/512

…

0 0110 110 -1 14/8*1/2 = 14/16

0 0110 111 -1 15/8*1/2 = 15/16

0 0111 000 0 8/8*1 = 1

0 0111 001 0 9/8*1 = 9/8

0 0111 010 0 10/8*1 = 10/8

…

0 1110 110 7 14/8*128 = 224

0 1110 111 7 15/8*128 = 240

0 1111 000 n/a inf

closest to zero

largest denorm
smallest norm

closest to 1 below

closest to 1 above

largest norm

Denormalized
numbers

Normalized
numbers

CSE351, Winter 2018L06: Floating Point

Special Properties of Encoding

 Floating point zero (0+) exactly the same bits as integer zero
 All bits = 0

 Can (Almost) Use Unsigned Integer Comparison
 Must first compare sign bits

 Must consider 0- = 0+ = 0

 NaNs problematic

• Will be greater than any other values

• What should comparison yield?

 Otherwise OK

• Denorm vs. normalized

• Normalized vs. infinity

39

