UNIVERSITY of WASHINGTON L06: Floating Point CSE3S1, Winter 2018

Floating Point

CSE 351 Winter 2018

Instructor:
Mark Wyse

Teaching Assistants:
Kevin Bi Parker, DeWilde, Emily Furst,
Sarah House, Waylon Huang, Vinny Palaniappan

[k306 1307 | L3207 -30REL | 32,767 <3206 . |

BaeA BAAA

Fol| RS &
;=] s

http://xked.com/571/

Administrivia

« Lab 1 due Friday (1/19)
® Submitbits.candpointer.c

+ Homework 2 out since 1/15, due 1/24
= On Integers, Floating Point, and x86-64

UNIVERSITY of WASHINGTON L06: Floating Point CSE3S1, Winter 2018

Unsigned Multiplication in C

Operands: *

wbits v O 110
True Product: . I XX

2w bits UV O [TTTTITT 111
Discard w bits: UMuit(u,v) [TTT eeTTT]

w bits

« Standard Multiplication Function
= |gnores high order w bits

« Implements Modular Arithmetic
= UMult,(u,v)=u-v mod 2%

L06: Floating Point

Multiplication with shift and add

« Operation u<<k gives u*2k
= Both signed and unsigned
u

* 2% [O] eee TO[I]O[e« TO[O]

Operands: w bits

True Product: w + k bits u-2 [TTT eee TTTT0[e J0[0]
Discard k bits: w bits UMult,(u , 24
TMult,(u , 2)

« Examples:

" u<<3 = u * 8

B u<<S - u<<3 == u * 24

= Most machines shift and add faster than multiply

« Ca iler g this code ically

L06: Floating Point

Number Representation Revisited

« What can we represent in one word?
= Signed and Unsigned Integers
= Characters (ASCII)
= Addresses
« How do we encode the following:
= Real numbers (e.g. 3.14159)
= Very large numbers (e.g. 6.02x10%3) FIoating
= Very small numbers (e.g. 6.626x1034) Point
= Special numbers (e.g. =, NaN)

Floating Point Topics

« Fractional binary numbers

« |EEE floating-point standard

+ Floating-point operations and rounding
« Floating-pointin C

+ There are many more details that
we won’t cover
® |t's a 58-page standard...

http://xkcd.com/257/

L06: Floating Point

Representation of Fractions

« “Binary Point,” like decimal point, signifies boundary
between integer and fractional parts:

i XX.YYYY
Example 6-bit
representation: 2! 1 N~

20 1 22 23 24

+ Example: 10.1010, = 1x21 + 1x271 + 1x23 = 2.625,,

« Binary point numbers that match the 6-bit format
above range from 0 (00.0000,) to 3.9375 (11.1111,)

Scientific Notation (Decimal)

mantissa exponent
T~6.02,, x 103

decimal point radix (base)

. Normalized form: exactly one digit (non-zero) to left
of decimal point

« Alternatives to representing 1/1,000,000,000
= Normalized: 1.0x10°

= Not normalized: 0.1x10%8,10.0x1010

UNIVERSITY of WASHINGTON L06: Floating Point

Scientific Notation (Binary)

mantissa exponent
T>~1.01, x 2!

binary point radix (base)

« Computer arithmetic that supports this called floating
point due to the “floating” of the binary point

= Declare such variablein Cas f1oat (or double)

CSE351, Winter 2018

L06: Floating Point

Scientific Notation Translation

« Convert from scientific notation to binary point to decimal
= Perform the multiplication by shifting the decimal until the exponent
disappears
+ Example: 1.011,X2% = 10110, = 22,,
+ Example: 1.011,X2? = 0.01011, = 0.34375,,
+ Convert from binary point to normalized scientific notation
= Distribute out exponents until binary point s to the right of a single digit
+ Example: 1101.001, = 1.101001,x2®

UNIVERSITY of WASHINGTON L06: Floating Point

Floating Point Topics o

« Fractional binary numbers

« IEEE floating-point standard
« Floating-point operations and rounding
« Floating-pointin C

« There are many more details that
we won’t cover

= |t's a 58-page standard...

L06: Floating Point

IEEE Floating Point

- |EEE 754

= Established in 1985 as uniform standard for floating point arithmetic
® Main idea: make numerically sensitive programs portable

= Specifies two things: representation and result of floating operations
= Now supported by all major CPUs

- Driven by numerical concerns
= Scientists/numerical analysts want them to be as real as possible
= Engineers want them to be easy to implement and fast
= Inthe end:
« Scientists mostly won out
« Nice standards for rounding, overflow, underflow, but...
«+ Hard to make fast in hardware

- Float operations can be an order of magnitude slower than integer ops

UNIVERSITY of WASHINGTON L06: Floating Point CSE3S1, Winter 2018

Floating Point Encoding

« Use normalized, base 2 scientific notation:
= Value: +1 x Mantissa x 28xponent
= Bit Fields: (-1)% x 1.M x 2(E=bias)
« Representation Scheme:
= Sign bit (O is positive, 1 is negative)
= Mantissa (a.k.a. significand) is the fractional part of the
number in normalized form and encoded in bit vector M

= Exponent weights the value by a (possibly negative) power
of 2 and encoded in the bit vector E

3130 2322 0
e | M |
1bit 8 bits 23 bits

UMNIVERSITY of WASHINGTON L06: Floating Point CSE351, Winter 2018

The Exponent Field

« Use biased notation
= Read exponent as unsigned, but with bias of 2%'-1 = 127
= Representable exponents roughly % positive and % negative
= Exponent O (Exp = 0) is represented as E =0b 0111 1111
« Why biased?
= Makes floating point arithmetic easier
= Makes somewhat compatible with two’s complement

= Practice: To encode in biased notation, add the bias then
encode in unsigned:

" Exp=1 - —E=0b
= Exp=127 - — E=0b
" Exp=-63 — — E=0b

UNIVERSITY of WASHINGTON L06: Floating Point CSE351, Winter 2018

The Mantissa (Fraction) Field

3130 2322 0
L& | M
1bit 8 bits 23 bits

(-1)° x (1. M) x 2(E-bias)

« Note the implicit 1 in front of the M bit vector

= Example: Ob 0011 1111 1100 0000 0000 0000 0000 0000
isreadas 1.1,=1.5,,, not 0.1,=0.5,,

= Gives us an extra bit of precision
« Mantissa “limits”
= Low values near M = 0b0...0 are close to 25

= High values near M = 0b1...1 are close to 25+

UMNIVERSITY of WASHINGTON L06: Floating Point CSE351, Winter 2018

Peer Instruction Question

«= What is the correct value encoded by the following
floating point number?

= Ob 0 10000000 11000000000000000000000

+1.5

+2.75

+3.5

We're lost...

moowp

L06: Floating Point

Precision and Accuracy

« Precision is a count of the number of bits in a
computer word used to represent a value
= Capacity for accuracy

Accuracy is a measure of the difference between the
actual value of a number and its computer
representation

= High precision permits high accuracy but doesn’t guarantee
it. It is possible to have high precision but low accuracy.
= Example: float pi = 3.14;

« pi will be represented using all 24 bits of the mantissa (highly
precise), but is only an approximation (not accurate)

Need Greater Precision?

« Double Precision (vs. Single Precision) in 64 bits

63 62 5251 32
(L ean | M (20 of 52) b
31 0

M (32 of 52) |

= Cvariable declared as double

= Exponent bias is now 21°-1 = 1023

= Advantages: greater precision (larger mantissa),
greater range (larger exponent)

= Disadvantages: more bits used,
slower to manipulate

L06: Floating Point

Representing Very Small Numbers

« But wait... what happened to zero?
= Using standard encoding 0x00000000 =

= Special case: Eand M all zeros =0
« Two zeros! But at least 0x00000000 = 0 like integers

« New numbers closest to 0: Gaps! b
= 2=1.0..0,x2"126 = 2126 - ! +00
" b=1.0..01,x2 12 = 21264 214 L)

= Normalization and implicit 1 are to blame
= Special case: E =0, M # 0 are denormalized numbers

Other Special Cases

« E=0xFF, M =0: t oo
= e.g. divisionby 0
= Still work in comparisons!
« E=0xFF, M #0: Not a Number (NaN)
= e.g. square root of negative number, 0/0, co—oo
® NaN propagates through computations
= Value of M can be useful in debugging
= New largest value (besides o=)?
= E = OxFF has now been taken!
= E=0xFE has largest: 1.1...1,x2127 = 2128 — 2104

UNIVERSITY of WASHINGTON L06: Floating Point CSE3S1, Winter 2018

Summary

« Floating point approximates real numbers:
2322

3130 (0]
(L e] M (23)
® Handles large numbers, small numbers, special numbers
= Exponent in biased notation (bias = 2%1-1)
+ Outside of representable exponents is overflow and underflow
= Mantissa approximates fractional portion of binary point
« Implicit leading 1 (normalized) except in special cases
« Exceeding length causes rounding
Exponent Mantissa Meaning
0x00 0 +0
0x00 non-zero +denorm num
0x01 — OxFE anything +norm num
OxFF 0 oo
OxFF non-zero NaN 21

L06: Floating Point

Floating point topics

« Fractional binary numbers

+ |EEE floating-point standard

- Floating-point operations and rounding

+ Floating-point in C

+ There are many more details that
we won’t cover
" |t's a 58-page standard...

UNIVERSITY of WASHINGTON L06: Floating Point

Distribution of Values

« What ranges are NOT representable?
= Between largest norm and infinity ~ Overflow
= Between zero and smallest denorm Underflow
= Between norm numbers? Rounding

« Given a FP number, what’s the bit pattern of the next
largest representable number?
= What is this “step” when Exp = 0?
= What is this “step” when Exp = 100?

« Distribution of values is denser toward zero

-5

-15 -10

5 10 15
infinity |

[Denormalized 4 Normalized

L06: Floating Point

Floating Point Operations: Basic Idea

Value = (-1)"xMantissax2Exponent

e T M

X +¢ y = Round(x + y)

@ X *; y = Round(x * y)

« Basic idea for floating point operations:
® First, compute the exact result
= Then round the result to make it fit into desired precision:
« Possibly over/underflow if exponent outside of range
« Possibly drop least-significant bits of mantissa to fit into M bit vector

Floating Point Addition | Line up the binary points!

+ (-1)5IxMan1x2Be1 + (-1)52xMan2x28¢2

= Assume Expl > Exp2 1.010%27 1.0100%22
4+ 1.000%27 + 0.0010%*22
+ Exact Result: (-1)°xManx2&® 22 1.0110*2?
"= Sign S, mantissa Man: [— Expl-Exp2 —|
« Result of signed align & add
= Exponent E: E1 +
[(-1)S Man |

« Adjustments:
= |f Man 2 2, shift Man right, increment Exp
= |f Man < 1, shift Man left k positions, decrement Exp by k
= Over/underflow if Exp out of range
® Round Man to fit mantissa precision

Floating Point Multiplication

+ (-1)1xMan1x251 x (-1)S2xMan2x28xe2

« Exact Result: (-1)>xMx2E
= Sign S: S1A78S2
® Mantissa Man: Manl x Man2
= Exponent Exp: Expl+ Exp2

= Adjustments:
= |f Man 2 2, shift Man right, increment Exp
= Over/underflow if Exp out of range
® Round Man to fit mantissa precision

Mathematical Properties of FP Operations

« Exponent overflow yields +oo or -oo
« Floats with value +oo, -oo, and NaN can be used in
operations
= Result usually still +oo, -0, or NaN; but not always intuitive
« Floating point operations do not work like real math,
due to rounding
= Not associative: (3.14+1e100)-1e100 != 3.14+(1e100-1el100)

0 3.14
= Not distributive: 100%(0.1+0.2) != 100%0.1+100%0.2
30.000000000000003553 30

® Not cumulative
« Repeatedly adding a very small number to a large one may do nothing

27

L06: Floating Point CSE351, Winter 2018

L06: Floating Point

Floating point topics

« Fractional binary numbers
+ |EEE floating-point standard

+ Floating-point operations and rounding

+ Floating-point in C

+ There are many more details that
we won’t cover
" |t's a 58-page standard...

L06: Floating Point

Floating Point in C | | |
« C offers two (well, 3) levels of precision

float 1.0f single precision (32-bit)

double 1.0 double precision (64-bit)

long double 1.0L (“double double” or quadruple)

precision (64-128 bits)

« #include <math.h> toget INFINITY and NAN
constants

« Equality (==) comparisons between floating point
numbers are tricky, and often return unexpected
results, so just avoid them!

L06: Floating Point

Floating Point Conversions in C 11

« Casting between int, float, and double changes
the bit representation
" int - float
« May be rounded (not enough bits in mantissa: 23)
« Overflow impossible
" intorfloat — double
« Exact conversion (all 32-bit ints representable)
" long — double
« Depends on word size (32-bit is exact, 64-bit may be rounded)
" doubleor float — int
« Truncates fractional part (rounded toward zero)

« “Not defined” when out of range or NaN: generally sets to Tmin
(even if the value is a very big positive)

L06: Floating Point

Number Representation Really Matters

+ 1991: Patriot missile targeting error

= clock skew due to conversion from integer to floating point
. 1996: Ariane 5 rocket exploded (S$1 billion)

= overflow converting 64-bit floating point to 16-bit integer
+ 2000: Y2K problem

= limited (decimal) representation: overflow, wrap-around

« 2038: Unix epoch rollover

= Unix epoch = seconds since 12am, January 1, 1970

= signed 32-bit integer representation rolls over to TMin in 2038

Other related bugs:

= 1982:Vancouver Stock Exchange 10% error in less than 2 years

= 1994: Intel Pentium FDIV (floating point division) HW bug ($475 million)
1997: USS Yorktown “smart” warship stranded: divide by zero

1998: Mars Climate Orbiter crashed: unit mismatch ($193 million)

Winter 2018

Floating Point Summary

« Floats also suffer from the fixed number of bits
available to represent them
= Can get overflow/underflow
= “Gaps” produced in representable numbers means we can
lose precision, unlike ints
« Some “simple fractions” have no exact representation (e.g. 0.2)
« “Every operation gets a slightly wrong result”
« Floating point arithmetic not associative or
distributive
= Mathematically equivalent ways of writing an expression
may compute different results
= Never test floating point values for equality!

« Careful when converting between intsand floats!

L06: Floating Point

Floating Point Summary

« Converting between integral and floating point data
types does change the bits
® Floating point roundingis a HUGE issue!
- Limited mantissa bits cause inaccurate representations
- Floating point arithmetic is NOT associative or distributive

L06: Floating Point

Denorm Numbers (non-testable)

material

« Denormalized numbers
® No leading 1
= Uses implicit exponent of =126 even though E = 0x00

« Denormalized numbers close the gap between zero
and the smallest normalized number o much
" Smallest norm: +1.0...0,,,,x2?6 =+ 2126 _~ qocerto0
= Smallest denorm: + 0.0...01,,,,x2 126 = + 2-14

« There is still a gap between zero and the smallest denormalized
number

two

L06: Floating Point

Floating Point and the Programmer

#include < >

int main(int argc, char* argv[]) {
float f1 =
float f2 =

s\n", £1 == £3 2 "yes" : "no");

return 0;

L06: Floating Point

BONUS SLIDES

An example that applies the IEEE Floating Point
concepts to a smaller (8-bit) representation scheme.

« 8-bit Floating Point Representation
= The sign bit is in the most significant bit (MSB)
= The next four bits are the exponent, with a bias of 241-1=7
= The last three bits are the mantissa

« Same general form as IEEE Format
= Normalized binary scientific point notation
= Similar special cases for 0, denormalized numbers, NaN, o

Dynamic Range (Positive Only)

Denormalized
numbers

Normalized
numbers

s
0

E
0000

0 0000

0

co ool

cocoooi

o ool

0000

0000
0000
0001
0001

0110
0110
0111
0111
0111

1110
1110
1111

M

000
001
010

110
111
000
001

110
111
000
001
010

110
111
000

Value

0
1/8*1/64
2/8*1/64

6/8%1/64
7/8%1/64
8/8*1/64
9/8%1/64

14/8*1/2
15/8*1/2
8/8*1
9/8*1
10/8*1

14/8*128

15/8*128 =

inf

1/512
2/512

6/512
7/512
8/512
9/512

14/16
15/16

9/8

=10/8

224
240

closest to zero

largest denorm
smallest norm

closest to 1 below

closest to 1 above

largest norm

L06: Floating Point

Special Properties of Encoding

= Floating point zero (0*) exactly the same bits as integer zero
= All bits =0

= Can (Almost) Use Unsigned Integer Comparison
= Must first compare sign bits

Must consider 0"=0*=0

NaNs problematic

+ Will be greater than any other values

+ What should comparison yield?

Otherwise OK

+ Denorm vs. normalized

+ Normalized vs. infinity

