Floating Point
CSE 351 Winter 2018

Instructor:
Mark Wyse
Teaching Assistants:
Kevin Bi Parker, DeWilde, Emily Furst, Sarah House, Waylon Huang, Vinny Palaniappan

Administrivia
- Lab 1 due Friday (1/19)
 - Submit bits.c and pointer.c
- Homework 2 out since 1/15, due 1/24
 - On Integers, Floating Point, and x86-64

Unsigned Multiplication in C
Operands:
\[u \] \[w \text{ bits} \]
\[v \]

True Product:
\[w \text{ bits} \]
\[2w \text{ bits} \]

Discard w bits:
\[w \text{ bits} \]

- Standard Multiplication Function
 - Ignores high order w bits
 - Implements Modular Arithmetic
 - \[\text{UMult}_w(u, v) = u \cdot v \mod 2^w \]

Multiplication with shift and add
- Operation \[u << k \] gives \[u \cdot 2^k \]
 - Both signed and unsigned

Operands:
\[w \text{ bits} \]
\[2^k \]

True Product:
\[w+k \text{ bits} \]
\[2^w \]

Discard k bits:
\[w \text{ bits} \]

- Examples:
 - \[u << 3 \]
 - \[u \cdot 8 \]
 - \[u << 5 - u << 3 \]
 - \[u \cdot 24 \]
 - Most machines shift and add faster than multiply
 - Compiler generates this code automatically

Number Representation Revisited
- What can we represent in one word?
 - Signed and Unsigned Integers
 - Characters (ASCII)
 - Addresses
- How do we encode the following:
 - Real numbers (e.g. 3.14159)
 - Very large numbers (e.g. 6.02×10^{23})
 - Very small numbers (e.g. 6.626×10^{-34})
 - Special numbers (e.g. ∞, NaN)

Floating Point
- Fractional binary numbers
- IEEE floating-point standard
- Floating-point operations and rounding
- Floating-point in C
- There are many more details that we won’t cover
 - It’s a 58-page standard...
Representation of Fractions

- “Binary Point,” like decimal point, signifies boundary between integer and fractional parts:
 - Example 6-bit representation: \(\frac{xx.yyy}{2^1 2^2 2^3 2^4} \)
 - Example: \(10.1010_2 = 1 \times 2^1 + 1 \times 2^{-1} + 1 \times 2^{-3} = 2.625_{10} \)
- Binary point numbers that match the 6-bit format above range from 0 (00.0000\(_2\)) to 3.9375 (11.1111\(_2\))

Scientific Notation (Decimal)

- Normalized form: exactly one digit (non-zero) to left of decimal point
- Alternatives to representing 1/1,000,000,000
 - Normalized: \(1.0 \times 10^{-9} \)
 - Not normalized: \(0.1 \times 10^{-8}, 10.0 \times 10^{-10} \)

Scientific Notation (Binary)

- Computer arithmetic that supports this called floating point due to the “floating” of the binary point
 - Declare such variable in C as float (or double)

Scientific Notation Translation

- Convert from scientific notation to binary point to decimal
 - Perform the multiplication by shifting the decimal until the exponent disappears
 - Example: \(1.011_2 \times 2^{4} = 10110_2 = 22_{10} \)
 - Example: \(1.011_2 \times 2^{-2} = 0.01011_2 = 0.34375_{10} \)
- Convert from binary point to normalized scientific notation
 - Distribute out exponents until binary point is to the right of a single digit
 - Example: \(1101.001_2 = 1.101001_2 \times 2^{3} \)

Floating Point Topics

- Fractional binary numbers
- IEEE floating-point standard
- Floating-point operations and rounding
- Floating-point in C

There are many more details that we won’t cover
 - It’s a 58-page standard...

IEEE Floating Point

- IEEE 754
 - Established in 1985 as uniform standard for floating point arithmetic
 - Main idea: make numerically sensitive programs portable
 - Specifies two things: representation and result of floating operations
 - Now supported by all major CPUs

Driven by numerical concerns
 - Scientists/numerical analysts want them to be as real as possible
 - Engineers want them to be easy to implement and fast
 - In the end:
 - Scientists mostly won out
 - Nice standards for rounding, overflow, underflow, but...
 - Hard to make fast in hardware
 - Float operations can be an order of magnitude slower than integer ops
Floating Point Encoding

- Use normalized, base 2 scientific notation:
 - Value: $±1 \times \text{Mantissa} \times 2^{\text{Exponent}}$
 - Bit Fields: $(-1)^s \times 1.M \times 2^{(E-bias)}$

- Representation Scheme:
 - Sign bit (0 is positive, 1 is negative)
 - Mantissa (a.k.a. significand) is the fractional part of the number in normalized form and encoded in bit vector M
 - Exponent weights the value by a (possibly negative) power of 2 and encoded in the bit vector E

<table>
<thead>
<tr>
<th>S</th>
<th>E</th>
<th>M</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 bit</td>
<td>8 bits</td>
<td>23 bits</td>
</tr>
</tbody>
</table>

The Exponent Field

- Use biased notation
 - Read exponent as unsigned, but with bias of $2^{w-1} - 1 = 127$
 - Representable exponents roughly $\frac{1}{2}$ positive and $\frac{1}{2}$ negative
 - Exponent 0 ($E = 0$) is represented as $E = 0b$ 0111 1111

- Why biased?
 - Makes floating point arithmetic easier
 - Makes somewhat compatible with two’s complement

- Practice: To encode in biased notation, add the bias then encode in unsigned:
 - $E = 1 \rightarrow E = 0b 100$
 - $E = 127 \rightarrow E = 0b$
 - $E = -63 \rightarrow E = 0b$

The Mantissa (Fraction) Field

- Note the implicit 1 in front of the M bit vector
- Example: $0b 00111111 11000000000000000000000$
 - is read as 1.12_{10}, not 0.12_{10}
 - Gives us an extra bit of precision
- Mantissa “limits”
 - Low values near $M = 0b0...0$ are close to 2^{Exp}
 - High values near $M = 0b1...1$ are close to $2^{\text{Exp}+1}$

Peer Instruction Question

- What is the correct value encoded by the following floating point number?
 - $0b 0 10000000 11000000000000000000000$

- A. + 0.75
- B. + 1.5
- C. + 2.75
- D. + 3.5
- E. We’re lost...

Precision and Accuracy

- Precision is a count of the number of bits in a computer word used to represent a value
 - Capacity for accuracy
- Accuracy is a measure of the difference between the actual value of a number and its computer representation
 - High precision permits high accuracy but doesn’t guarantee it. It is possible to have high precision but low accuracy.
 - Example: float $p1 = 3.14$;
 - $p1$ will be represented using all 24 bits of the mantissa (highly precise), but is only an approximation (not accurate)

Need Greater Precision?

- Double Precision (vs. Single Precision) in 64 bits
 - C variable declared as double
 - Exponent bias is now $2^{w-1} = 1023$
 - Advantages: greater precision (larger mantissa), greater range (larger exponent)
 - Disadvantages: more bits used, slower to manipulate
Representing Very Small Numbers

- But wait... what happened to zero?
 - Using standard encoding 0x00000000 =
 - Special case: E and M all zeros = 0
 - Two zeros! But at least 0x00000000 = 0 like integers
- New numbers closest to 0:
 - a = 1.0...0 × 2\(^{126}\) = 2\(^{126}\)
 - b = 1.0...01 × 2\(^{126}\) = 2\(^{126}\) + 2\(^{149}\)
 - Normalization and implicit 1 are to blame
 - Special case: E = 0, M ≠ 0 are denormalized numbers

Other Special Cases

- E = 0xFF, M = 0: ±∞
 - e.g. division by 0
 - Still work in comparisons!
- E = 0xFF, M ≠ 0: Not a Number (NaN)
 - e.g. square root of negative number, 0/0, ±∞
 - NaN propagates through computations
 - Value of M can be useful in debugging
 - New largest value (besides ±∞)?
 - E = 0xFF has now been taken!
 - E = 0xFE has largest: 1.1...1 × 2\(^{127}\) = 2\(^{128}\) – 2\(^{104}\)

Summary

- Floating point approximates real numbers:
 - Handles large numbers, small numbers, special numbers
 - Exponent in biased notation (bias = 2\(^{w-1}\) - 1)
 - Outside of representable exponents is overflow and underflow
 - Mantissa approximates fractional portion of binary point
 - Implicit leading 1 (normalized) except in special cases
 - Exceeding length causes rounding

<table>
<thead>
<tr>
<th>Exponent</th>
<th>Mantissa</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>0x00</td>
<td>0</td>
<td>±0</td>
</tr>
<tr>
<td>0x01 – 0xFE</td>
<td>anything</td>
<td>±1 norm num</td>
</tr>
<tr>
<td>0xFF</td>
<td>0</td>
<td>±∞</td>
</tr>
<tr>
<td></td>
<td>0xFF</td>
<td>NaN</td>
</tr>
</tbody>
</table>

Floating point topics

- Fractional binary numbers
- IEEE floating-point standard
- Floating-point operations and rounding
- Floating-point in C

- There are many more details that we won’t cover
 - It’s a 58-page standard...

Distribution of Values

- What ranges are NOT representable?
 - Between largest norm and infinity: Overflow
 - Between zero and smallest denom: Underflow
 - Between norm numbers: Rounding
- Given a FP number, what’s the bit pattern of the next largest representable number?
 - What is this “step” when Exp = 0?
 - What is this “step” when Exp = 100?
- Distribution of values is denser toward zero

Floating Point Operations: Basic Idea

Value = (-1)\(^S\) × Mantissa × 2\(^E\)

- \(x +_r y = \text{Round}(x + y)\)
- \(x *_r y = \text{Round}(x * y)\)

- Basic idea for floating point operations:
 - First, compute the exact result
 - Then round the result to make it fit into desired precision:
 - Possibly over/underflow if exponent outside of range
 - Possibly drop least-significant bits of mantissa to fit into M bit vector
Floating Point Addition

- Assumed $\text{Exp}_1 > \text{Exp}_2$
- Exact Result: $(-1)^{S_1} \times \text{Man}_1 \times 2^{\text{Exp}_1} + (-1)^{S_2} \times \text{Man}_2 \times 2^{\text{Exp}_2}$
- Sign S: $S_1 \oplus S_2$
- Mantissa Man: $\text{Man}_1 \times \text{Man}_2$
- Exponent E: $\text{Exp}_1 + \text{Exp}_2$
- Adjustments:
 - If $\text{Man} \geq 2$, shift Man right, increment Exp
 - If $\text{Man} < 1$, shift Man left k positions, decrement Exp by k
 - Over/underflow if Exp out of range
 - Round Man to fit mantissa precision

Floating Point Multiplication

- Exact Result: $(-1)^{S} \times \text{Man} \times 2^{E}$
- Sign S: $S_1 \oplus S_2$
- Mantissa Man: $\text{Man}_1 \times \text{Man}_2$
- Exponent E: $\text{Exp}_1 + \text{Exp}_2$
- Adjustments:
 - If $\text{Man} \geq 2$, shift Man right, increment Exp
 - Over/underflow if Exp out of range
 - Round Man to fit mantissa precision

Mathematical Properties of FP Operations

- Exponent overflow yields $+\infty$ or $-\infty$
- Floats with value $+\infty$, $-\infty$, and NaN can be used in operations
 - Result usually still $+\infty$, $-\infty$, or NaN; but not always intuitive
 - Floating point operations do not work like real math, due to rounding
 - Not associative: $(3.14 + 1e100) - 1e100 \neq 3.14 + (1e100 - 1e100)$
 - Not distributive: $100 \times (0.1 + 0.2) \neq 100 \times 0.1 + 100 \times 0.2$
 - Not cumulative
 - Repeatedly adding a very small number to a large one may do nothing

Floating Point in C

- C offers two (well, 3) levels of precision
 - `float`: single precision (32-bit)
 - `double`: double precision (64-bit)
 - `long double`: double precision (64-bit)
- Include `<math.h>` to get INFINITY and NAN constants

- Equality (`==`) comparisons between floating point numbers are tricky, and often return unexpected results, so just avoid them!

Floating Point Conversions in C

- Casting between int, float, and double changes the bit representation
 - int → float
 - May be rounded (not enough bits in mantissa: 23)
 - Overflow impossible
 - int or float → double
 - Exact conversion (all 32-bit ints representable)
 - `long` → double
 - Depends on word size (32-bit is exact, 64-bit may be rounded)
 - `double` or `float` → int
 - Truncates fractional part (rounded toward zero)
 - "Not defined" when out of range or NaN: generally sets to T_{\min} (even if the value is a very big positive)
Number Representation Really Matters

- 1991: Patriot missile targeting error
 - Clock skew due to conversion from integer to floating point
- 1996: Ariane 5 rocket exploded ($1 billion)
 - Overflow converting 64-bit floating point to 16-bit integer
- 2000: Y2K problem
 - Limited (decimal) representation: overflow, wrap-around
- 2038: Unix epoch rollover
 - Unix epoch = seconds since 12am, January 1, 1970
 - Signed 32-bit integer representation rolls over to TMin in 2038

Other related bugs:
- 1982: Vancouver Stock Exchange 10% error in less than 2 years
- 1994: Intel Pentium FDIV (floating point division) HW bug ($475 million)
- 1997: USS Yorktown "smart" warship stranded: divide by zero
- 1998: Mars Climate Orbiter crashed: unit mismatch ($193 million)

Floating Point Summary

- Floats also suffer from the fixed number of bits available to represent them
 - Can get overflow/underflow
 - "Gaps" produced in representable numbers means we can lose precision, unlike ints
 - Some "simple fractions" have no exact representation (e.g. 0.2)
 - "Every operation gets a slightly wrong result"
- Floating point arithmetic not associative or distributive
 - Mathematically equivalent ways of writing an expression may compute different results
- Never test floating point values for equality!
- Careful when converting between ints and floats!

Denorm Numbers

- Denormalized numbers
 - No leading 1
 - Uses implicit exponent of –126 even though E = 0x00
- Denormalized numbers close the gap between zero and the smallest normalized number
 - Smallest norm: ±1.0...00 × 2−126 = ± 2−126
 - Smallest denorm: ±0.0...01 × 2−126 = ± 2−149
 - There is still a gap between zero and the smallest denormalized number

Floating Point and the Programmer

```c
#include <stdio.h>

int main(int argc, char* argv[]) {
    float f1 = 1.0;
    float f2 = 0.0;
    int i;
    for (i = 0; i < 10; i++)
        f2 += 1.0/10.0;
    printf("%.8x %.8x\n", (int*)&f1, (int*)&f2);
    printf("%.9f %.9f\n", f1, f2);
    f1 = 1E30;
    f2 = 1E-30;
    float f3 = f1 + f2;
    printf("%.9f %.9f\n", f1, f2 ? "yes" : "no");
    return 0;
}
```

BONUS SLIDES

An example that applies the IEEE Floating Point concepts to a smaller (8-bit) representation scheme.
Tiny Floating Point Example

- 8-bit Floating Point Representation
 - The sign bit is in the most significant bit (MSB)
 - The next four bits are the exponent, with a bias of $2^{4-1} - 1 = 7$
 - The last three bits are the mantissa

- Same general form as IEEE Format
 - Normalized binary scientific point notation
 - Similar special cases for 0, denormalized numbers, NaN, ∞

Dynamic Range (Positive Only)

<table>
<thead>
<tr>
<th>S</th>
<th>E</th>
<th>M</th>
<th>Exp Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0000 000</td>
<td>-6</td>
<td>1/8*1/64 = 1/512</td>
</tr>
<tr>
<td></td>
<td>0000 001</td>
<td>-6</td>
<td>2/8*1/64 = 2/512</td>
</tr>
<tr>
<td>Denormalized numbers</td>
<td>0000 110</td>
<td>-6</td>
<td>6/8*1/64 = 6/512</td>
</tr>
<tr>
<td></td>
<td>0000 111</td>
<td>-6</td>
<td>7/8*1/64 = 7/512</td>
</tr>
<tr>
<td></td>
<td>0001 000</td>
<td>-6</td>
<td>8/8*1/64 = 8/512</td>
</tr>
<tr>
<td></td>
<td>0001 001</td>
<td>-6</td>
<td>9/8*1/64 = 9/512</td>
</tr>
<tr>
<td></td>
<td>0110 110</td>
<td>-1</td>
<td>14/8*1/2 = 14/16</td>
</tr>
<tr>
<td></td>
<td>0110 111</td>
<td>-1</td>
<td>15/8*1/2 = 15/16</td>
</tr>
<tr>
<td>Normalized numbers</td>
<td>0011 000</td>
<td>0</td>
<td>8/8*1 = 1</td>
</tr>
<tr>
<td></td>
<td>0011 001</td>
<td>0</td>
<td>9/8*1 = 9/8</td>
</tr>
<tr>
<td></td>
<td>0111 010</td>
<td>0</td>
<td>10/8*1 = 10/8</td>
</tr>
<tr>
<td></td>
<td>1110 110</td>
<td>7</td>
<td>14/8*128 = 224</td>
</tr>
<tr>
<td></td>
<td>1110 111</td>
<td>7</td>
<td>15/8*128 = 240</td>
</tr>
<tr>
<td></td>
<td>1111 000</td>
<td>n/a</td>
<td>inf</td>
</tr>
</tbody>
</table>

Special Properties of Encoding

- Floating point zero (0^+) exactly the same bits as integer zero
 - All bits = 0

- Can (Almost) Use Unsigned Integer Comparison
 - Must first compare sign bits
 - Must consider $0^- = 0^+$ = 0
 - NaNs problematic
 - Will be greater than any other values
 - What should comparison yield?
 - Otherwise OK
 - Denorm vs. normalized
 - Normalized vs. infinity