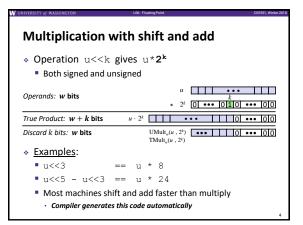
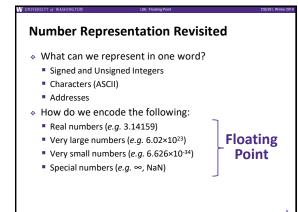


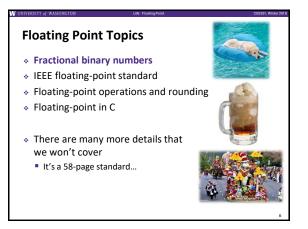
Administrivia

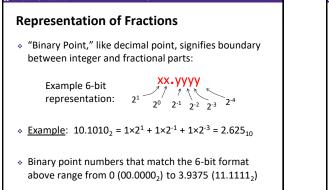
- Lab 1 due Friday (1/19)
- Submit bits.c and pointer.c
- Homework 2 out since 1/15, due 1/24
 On Integers, Floating Point, and x86-64

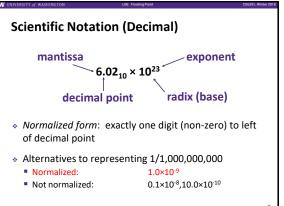
Unsigned Multiplication in C и Operands: w bits True Product: 2w bits u·v ••• ••• Discard w bits: w bits $UMult_w(u, v)$ ••• Standard Multiplication Function Ignores high order w bits Implements Modular Arithmetic • $UMult_w(u, v) = u \cdot v \mod 2^w$

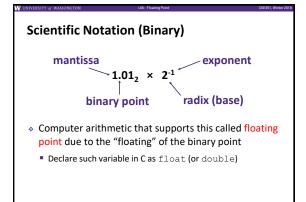


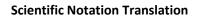




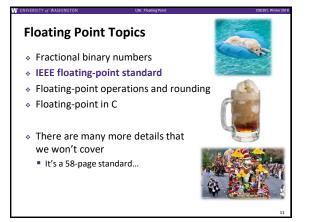








- Convert from scientific notation to binary point to decimal
 Perform the multiplication by shifting the decimal until the exponent
 - disappears
 - <u>Example</u>: $1.011_2 \times 2^4 = 10110_2 = 22_{10}$
 - * Example: $1.011_2 \times 2^{-2} = 0.01011_2 = 0.34375_{10}$
- Convert from binary point to *normalized* scientific notation
 Distribute out exponents until binary point is to the right of a single digit
 - Example: 1101.001₂ = 1.101001₂×2³



IEEE Floating Point

IEEE 754

- Established in 1985 as uniform standard for floating point arithmetic
- Main idea: make numerically sensitive programs portable
- Specifies two things: representation and result of floating operations
- Now supported by all major CPUs

Driven by numerical concerns

- Scientists/numerical analysts want them to be as real as possible
- Engineers want them to be easy to implement and fast
- In the end:
 - · Scientists mostly won out
 - Nice standards for rounding, overflow, underflow, but...
- Hard to make fast in hardware
- Float operations can be an order of magnitude slower than integer ops

W UNIVERSITY of WASHINGTON	L05: Floating Point	CSE351, Winter 201
Floating Poin	t Encoding	
 Use normalized 	d, base 2 scientific notation:	
Value:	±1 × Mantissa × 2 ^{Exponent}	
Bit Fields:	$(-1)^{S} \times 1.M \times 2^{(E-bias)}$	
Representation	n Scheme:	
Sign bit (0 is po	ositive, 1 is negative)	
	a. significand) is the fractional part o malized form and encoded in bit ver	
	hts the value by a (possibly negative led in the bit vector E	e) power
31 30 23	22	0
S E	Μ	

23 bits

1 bit 8 bits

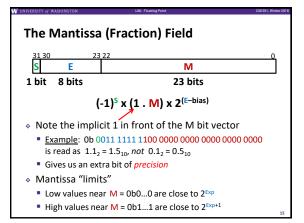
The Exponent Field

Use biased notation

- Read exponent as unsigned, but with bias of 2^{w-1}-1 = 127
- Representable exponents roughly ½ positive and ½ negative
- Exponent 0 (Exp = 0) is represented as E = 0b 0111 1111
- Why biased?
 - Makes floating point arithmetic easier
 - Makes somewhat compatible with two's complement
- Practice: To encode in biased notation, add the bias then encode in unsigned:

• Exp = 1 \rightarrow $\rightarrow E = Ob$

- Exp = 127 → $\rightarrow E = 0b$ $\rightarrow E = 0b$
- Exp = -63 →

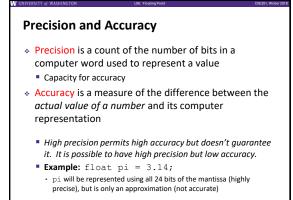


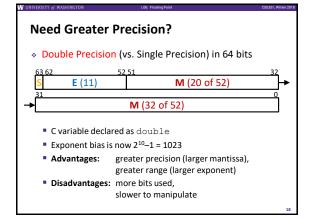
Peer Instruction Question

- What is the correct value encoded by the following floating point number?

Α.	+	0.7	/5

- B. +1.5
- C. + 2.75
- D. + 3.5
- E. We're lost...





Representing Very Small Numbers

- But wait... what happened to zero?
 - Using standard encoding 0x0000000 =
 - Special case: E and M all zeros = 0
 - Two zeros! But at least 0x0000000 = 0 like integers
- New numbers closest to 0:
 a = 1.0...0,×2⁻¹²⁶ = 2⁻¹²⁶

Gaps! b -∞• IIIIII

• $b = 1.0...01_2 \times 2^{-126} = 2^{-126} + 2^{-149}$

0xFF

- Normalization and implicit 1 are to blame
- Special case: E = 0, M ≠ 0 are denormalized numbers

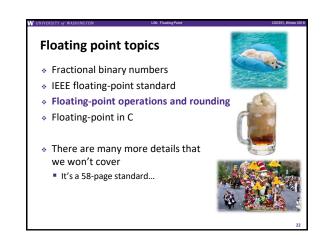
Other Special Cases

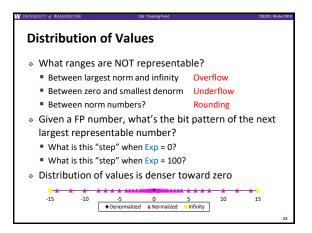
- - e.g. division by 0
 - Still work in comparisons!
- * E = 0xFF, M ≠ 0: Not a Number (NaN)
 - e.g. square root of negative number, 0/0, ∞-∞
 - NaN propagates through computations
 - Value of M can be useful in debugging
- ♦ New largest value (besides ∞)?
 - E = 0xFF has now been taken!
 - E = 0xFE has largest: 1.1...1₂×2¹²⁷ = 2¹²⁸ 2¹⁰⁴

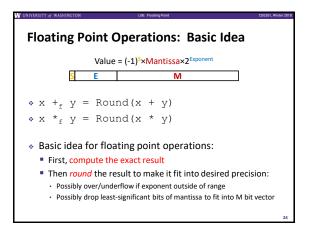
V UNIVERSITT BY	WASHINGTON	Los. Fioating Point		CSESS1, Willter 2018				
Sum	mary							
 Floating point approximates real numbers: 31 30 23 22 0 								
S	E (8)	M (23)						
• H	Handles large numbers, small numbers, special numbers							
 Exponent in biased notation (bias = 2^{w-1}-1) Outside of representable exponents is <i>overflow</i> and <i>underflow</i> 								
	Implicit leadi	ng 1 (nor	malized) except ir	ortion of binar special cases	y point			
Exceeding length causes rounding								
	Expo 0x		Mantissa 0	Meaning + 0				
	0x		non-zero	± denorm num				
	0x01 -		anything	± norm num				
	01	F	0	+ 00				

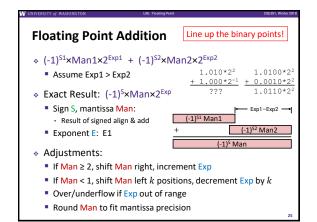
non-zero

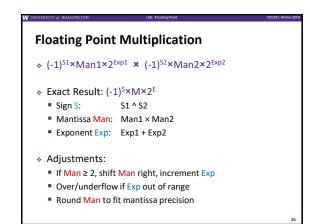
NaN









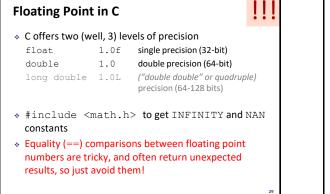


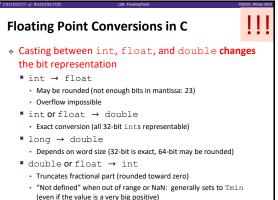
Mathematical Properties of FP Operations

- ♦ Exponent overflow yields +∞ or -∞
- ✤ Floats with value +∞, -∞, and NaN can be used in operations
 - Result usually still +∞, -∞, or NaN; but not always intuitive
- Floating point operations do not work like real math, due to rounding
 - Not associative: (3.14+1e100)-le100 != 3.14+(1e100-le100) 0 3.14
 - Not distributive: 100*(0.1+0.2) != 100*0.1+100*0.2
 - 30.00000000003553 30
 - Not cumulative
 - · Repeatedly adding a very small number to a large one may do nothing

Floating point topics

- Fractional binary numbers
- IEEE floating-point standard
- Floating-point operations and rounding
- Floating-point in C
- There are many more details that we won't cover
 - It's a 58-page standard...





Number Representation Really Matters

- 1991: Patriot missile targeting error
 clock skew due to conversion from integer to floating point
- 1996: Ariane 5 rocket exploded (\$1 billion)
 overflow converting 64-bit floating point to 16-bit integer
- 2000: Y2K problem
 - limited (decimal) representation: overflow, wrap-around
- 2038: Unix epoch rollover
 - Unix epoch = seconds since 12am, January 1, 1970
 - signed 32-bit integer representation rolls over to TMin in 2038

other related bugs:

- 1982: Vancouver Stock Exchange 10% error in less than 2 years
- 1994: Intel Pentium FDIV (floating point division) HW bug (\$475 million)
- 1997: USS Yorktown "smart" warship stranded: divide by zero
- 1998: Mars Climate Orbiter crashed: unit mismatch (\$193 million)

Floating Point Summary

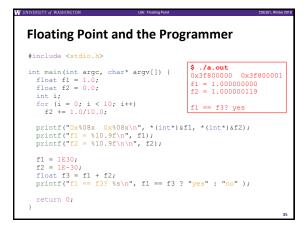
- Floats also suffer from the fixed number of bits available to represent them
 - Can get overflow/underflow
 - "Gaps" produced in representable numbers means we can lose precision, unlike ints
 - Some "simple fractions" have no exact representation (e.g. 0.2)
 - "Every operation gets a slightly wrong result"
- Floating point arithmetic not associative or distributive
 - Mathematically equivalent ways of writing an expression may compute different results
- Never test floating point values for equality!
- Careful when converting between ints and floats!

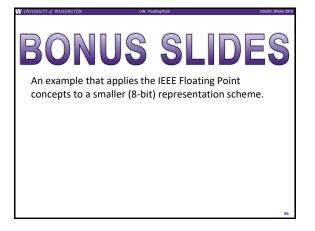
Floating Point Summary

 Converting between integral and floating point data types *does* change the bits

- Floating point rounding is a HUGE issue!
 - · Limited mantissa bits cause inaccurate representations
 - Floating point arithmetic is NOT associative or distributive

(NORMALLY & RAMINGTON (NORMALLY & R





Tiny Floating Point Example a exp man a 4 3 8-bit Floating Point Representation The sign bit is in the most significant bit (MSB)

- The next four bits are the exponent, with a bias of 2⁴⁻¹-1 = 7
- The last three bits are the mantissa

Same general form as IEEE Format

- Normalized binary scientific point notation
- Similar special cases for 0, denormalized numbers, NaN, ∞

Dynamic Range (Positive Only) SE M Exp Value 0 0000 000 -6 1/8*1/64 = 1/512 closest to zero 2/8*1/64 = 2/512 0 0000 001 -6 Denormalized 0 0000 010 -6 numbers 0 0000 110 6/8*1/64 = 6/512 -6 0/8-1/64 = 0/312 7/8+1/64 = 7/512 largest denorm 8/8*1/64 = 8/512 smallest norm 9/8*1/64 = 9/512 0 0000 111 0 0001 000 -6 -6 0 0001 001 -6 0 0110 110 -1 0 0110 111 -1 Normalized 0 0111 000 0 0111 001 0 numbers 0 0 0111 010 0 14/8*128 = 224 15/8*128 = 240 inf 0 1110 110 7 0 1110 111 0 1111 000 largest norm n/a

Special Properties of Encoding

- Floating point zero (0⁺) exactly the same bits as integer zero
 All bits = 0
- * Can (Almost) Use Unsigned Integer Comparison
 - Must first compare sign bits
 - Must consider 0⁻ = 0⁺ = 0
 - NaNs problematic
 - Will be greater than any other values
 - What should comparison yield?
 - Otherwise OK
 - Denorm vs. normalized
 Normalized vs. infinity