
CSE351, Winter 2018L01: Introduction, Binary

The Hardware/Software Interface
CSE 351 Winter 2018

Instructor:

Mark Wyse

Teaching Assistants:

Kevin Bi

Parker DeWilde

Emily Furst

Sarah House

Waylon Huang

Vinny Palaniappan

http://xkcd.com/676/

http://xkcd.com/676/

CSE351, Winter 2018L01: Introduction, Binary

Welcome to CSE351!

❖ See the key abstractions “under the hood” to
describe “what really happens” when a program runs
▪ How is it that “everything is 1s and 0s”?

▪ Where does all the data get stored and how do you find it?

▪ How can more than one program run at once?

▪ What happens to a Java or C program before the hardware executes it?

▪ And much, much, much more…

❖ An introduction that will:
▪ Profoundly change/augment your view of computers and programs

▪ Connect your source code down to the hardware

▪ Leave you impressed that computers ever work

2

CSE351, Winter 2018L01: Introduction, Binary

Who: Course Staff

❖ Your Instructor: call me Mark

❖ TAs:

▪ Available in section, office hours, via email, on Piazza

▪ An invaluable source of information and help

❖ Get to know us

▪ We are here to help you succeed!

3

CSE351, Winter 2018L01: Introduction, Binary

About Me

❖ CSE PhD student, Computer Architecture

❖ Washington native

❖ Food lover – I’ll try to cook almost anything

❖ Post-Grad Scholar at AMD Research during 2017

▪ Also, 18 of past 24 months

▪ Future GPU microarchitecture for compute applications

❖ Teaching 351 for the first time!

▪ TA’d in Wi13, Wi14, and Su14 (Coursera offering)

4

CSE351, Winter 2018L01: Introduction, Binary

Who are You?

❖ ~ 115 students registered, single lecture

▪ See me if you are interested in taking the class but are not
yet registered

❖ CSE majors, EE majors, and more

▪ Most of you will find almost everything in the course new

❖ Get to know each other and help each other out!

▪ Learning is much more fun with friends

▪ Working well with others is a valuable life skill

▪ Diversity of perspectives expands your horizons

5

CSE351, Winter 2018L01: Introduction, Binary

Registration

❖ If you need to register for the course:

▪ https://goo.gl/forms/L7dG4a9RYfJzucZ72

❖ There is an option for EE – 351 only

❖ Non-majors: select ‘Other’ for major

❖ Continue to attend lectures!

❖ Go to a section with open space tomorrow

❖ See me after class to write down UW-ID

6

https://goo.gl/forms/L7dG4a9RYfJzucZ72

CSE351, Winter 2018L01: Introduction, Binary

1000001101111100001001000001110000000000
0111010000011000
10001011010001000010010000010100
10001011010001100010010100010100
100011010000010000000010
1000100111000010
110000011111101000011111
11110111011111000010010000011100
10001001010001000010010000011000

1000001101111100001001000001110000000000
0111010000011000
10001011010001000010010000010100
10001011010001100010010100010100
100011010000010000000010
1000100111000010
110000011111101000011111
11110111011111000010010000011100

The Hardware/Software Interface

❖ Why do we need a hardware/software interface?

❖ Why do we need to understand both sides of this
interface?

CSE351, Winter 2018L01: Introduction, Binary

C/Java, assembly, and machine code
High Level Language
(e.g. C, Java)

Assembly Language

Machine Code

8

if (x != 0) y = (y+z)/x;

cmpl $0, -4(%ebp)

je .L2

movl -12(%ebp), %eax

movl -8(%ebp), %edx

leal (%edx,%eax), %eax

movl %eax, %edx

sarl $31, %edx

idivl -4(%ebp)

movl %eax, -8(%ebp)

.L2:

1000001101111100001001000001110000000000

0111010000011000

10001011010001000010010000010100

10001011010001100010010100010100

100011010000010000000010

1000100111000010

110000011111101000011111

11110111011111000010010000011100

10001001010001000010010000011000

Compiler

Assembler

CSE351, Winter 2018L01: Introduction, Binary

C/Java, assembly, and machine code

❖ All program fragments are
equivalent

❖ You’d rather write C!
(more human-friendly)

❖ Hardware executes strings
of bits
▪ The machine instructions are

actually much shorter than the
number of bits we would need
to represent the characters in
the assembly language

▪ In reality everything is voltages
and electrical signals

9

1000001101111100001001000001110000000000

0111010000011000

10001011010001000010010000010100

10001011010001100010010100010100

100011010000010000000010

1000100111000010

110000011111101000011111

11110111011111000010010000011100

10001001010001000010010000011000

Compiler

Assembler

if (x != 0) y = (y+z)/x;

cmpl $0, -4(%ebp)

je .L2

movl -12(%ebp), %eax

movl -8(%ebp), %edx

leal (%edx,%eax), %eax

movl %eax, %edx

sarl $31, %edx

idivl -4(%ebp)

movl %eax, -8(%ebp)

.L2:

CSE351, Winter 2018L01: Introduction, Binary

HW/SW Interface: Historical Perspective

❖ Hardware started out quite primitive

10

Jean Jennings (left), Marlyn Wescoff (center), and Ruth Lichterman
program ENIAC at the University of Pennsylvania, circa 1946.
Photo: Corbis
http://fortune.com/2014/09/18/walter-isaacson-the-women-of-eniac/

https://s-media-cache-
ak0.pinimg.com/564x/91/37/23/91372375e2e6517f8af128aa
b655e3b4.jpg

1940s

1970s

http://fortune.com/2014/09/18/walter-isaacson-the-women-of-eniac/
https://s-media-cache-ak0.pinimg.com/564x/91/37/23/91372375e2e6517f8af128aab655e3b4.jpg

CSE351, Winter 2018L01: Introduction, Binary

HW/SW Interface: Historical Perspective

❖ Hardware started out quite primitive

▪ Programmed with very basic instructions (primitives)

▪ e.g. a single instruction for adding two integers

❖ Software was also very basic

▪ Closely reflected the actual hardware it was running on

▪ Specify each step manually

11

Architecture Specification (Interface)

Hardware

CSE351, Winter 2018L01: Introduction, Binary

HW/SW Interface: Assemblers

❖ Life was made a lot better by assemblers

▪ 1 assembly instruction = 1 machine instruction

▪ More human-readable syntax
• Assembly instructions are character strings, not bit strings

▪ Can use symbolic names

12

Hardware

Assembler specification

Assembler
User

program in
assembly
language

CSE351, Winter 2018L01: Introduction, Binary

HW/SW Interface: Higher-Level Languages

❖ Higher level of abstraction

▪ 1 line of a high-level language is compiled into many
(sometimes very many) lines of assembly language

13

Hardware

C language specification

AssemblerC Compiler
User

program
in C

CSE351, Winter 2018L01: Introduction, Binary

HW/SW Interface: Compiled Programs

14

HardwareAssemblerC Compiler

Code Time Compile Time Run Time

Note: The compiler and assembler are just programs, developed using this
same process.

.exe file.c file

User
program

in C

CSE351, Winter 2018L01: Introduction, Binary

Roadmap

15

car *c = malloc(sizeof(car));

c->miles = 100;

c->gals = 17;

float mpg = get_mpg(c);

free(c);

Car c = new Car();

c.setMiles(100);

c.setGals(17);

float mpg =

c.getMPG();

get_mpg:

pushq %rbp

movq %rsp, %rbp

...

popq %rbp

ret

Java:C:

Assembly
language:

Machine
code:

0111010000011000

100011010000010000000010

1000100111000010

110000011111101000011111

Computer
system:

OS:

Memory & data
Integers & floats
x86 assembly
Procedures & stacks
Executables
Arrays & structs
Memory & caches
Processes
Virtual memory
Memory allocation
Java vs. C

CSE351, Winter 2018L01: Introduction, Binary

Course Perspective

❖ CSE351 will make you a better programmer
▪ Purpose is to show how software really works

• Understanding of some of the abstractions that exist between
programs and the hardware they run on, why they exist, and how
they build upon each other

▪ Understanding the underlying system makes you more effective

• Better debugging

• Better basis for evaluating performance

• How multiple activities work in concert (e.g. OS and user programs)

▪ “Stuff everybody learns and uses and forgets not knowing”

❖ CSE351 presents a world-view that will empower you
▪ The intellectual and software tools to understand the trillions+ of 1s and

0s that are “flying around” when your program runs

16

CSE351, Winter 2018L01: Introduction, Binary

Lecture Outline

❖ Course Introduction

❖ Course Policies
▪ https://courses.cs.washington.edu/courses/cse351/18wi/syllabus/

❖ Binary

17

CSE351, Winter 2018L01: Introduction, Binary

Communication

❖ Website: http://cs.uw.edu/351

▪ Schedule, policies, materials, videos, assignments, etc.

❖ Discussion:
http://piazza.com/washington/winter2018/cse351

▪ Announcements made here

▪ Ask and answer questions – staff will monitor and contribute

❖ Office Hours: spread throughout the week

▪ Can also e-mail to make individual appointments

❖ Anonymous feedback:

▪ Comments about anything related to the course where you
would feel better not attaching your name

▪ Can send to individual staff member of whole staff 18

http://cs.uw.edu/351
http://piazza.com/washington/winter2018/cse351

CSE351, Winter 2018L01: Introduction, Binary

Textbooks

❖ Computer Systems: A Programmer’s Perspective

▪ Randal E. Bryant and David R. O’Hallaron

▪ Website: http://csapp.cs.cmu.edu

▪ Must be 3rd edition
• http://csapp.cs.cmu.edu/3e/changes3e.html

• http://csapp.cs.cmu.edu/3e/errata.html

▪ This book really matters for the course!
• How to solve labs

• Practice problems and homework

❖ A good C book – any will do

▪ The C Programming Language (Kernighan and Ritchie)

▪ C: A Reference Manual (Harbison and Steele)
19

http://csapp.cs.cmu.edu/
http://csapp.cs.cmu.edu/3e/changes3e.html
http://csapp.cs.cmu.edu/3e/errata.html

CSE351, Winter 2018L01: Introduction, Binary

Course Components

❖ Lectures (26)
▪ Introduce the concepts; supplemented by textbook

❖ Sections (10)
▪ Applied concepts, important tools and skills for labs, clarification of

lectures, exam review and preparation

❖ Online homework assignments (5)
▪ Problems to solidify understanding; submitted as Canvas quizzes

❖ Programming lab assignments (5.5)
▪ Provide in-depth understanding (via practice) of an aspect of system

❖ Exams (2)
▪ Midterm: Monday, February 5, in class

▪ Final: Wednesday, March 14, 2:30-4:20pm (UW assigned time/location)

20

CSE351, Winter 2018L01: Introduction, Binary

Grading

❖ Homework: 20% total

▪ Autograded; 20 submission attempts

▪ Group work okay

❖ Labs: 35% total

▪ Graded by TAs; last submission graded

▪ Individual work only

❖ Exams: Midterm (15%) and Final (30%)

▪ Many old exams on course website (soon)

❖ More details on course website

21

CSE351, Winter 2018L01: Introduction, Binary

Due Dates and Late Work Policy

❖ Homework

▪ No late days/submissions.

❖ Labs

▪ Turn in by the deadline, or 20% per day penalty

▪ No penalty-free late days

▪ 20% off per day, through 4th day after due date

▪ Score = min(graded score, 100% - 20% * num_late_days)
• num_late_days = ceil(hours late / 24)

• E.g., if you receive 89%, but you turned it in within 24 hours after due
date, your score will be 80%

❖ Complete assignments by their due date!

22

CSE351, Winter 2018L01: Introduction, Binary

Collaboration and Academic Integrity

❖ All submissions are expected to be yours and yours
alone

❖ You are encouraged to discuss your assignments with
other students (ideas), but we expect that what you
turn in is yours

❖ It is NOT acceptable to copy solutions from other
students or to copy (or start your) solutions from the
Web (including Github)

❖ Our goal is that *YOU* learn the material so you will
be prepared for exams, interviews, and the future

23

CSE351, Winter 2018L01: Introduction, Binary

Course Environment and Culture

❖ Simple rules for our course:

▪ Respect one another

▪ Ask questions

▪ Have fun!

❖ If at any point you feel uncomfortable, disrespected,
excluded, etc. by any staff member or another
student, please report the incident so we may
address the issue and maintain a supportive and
inclusive learning environment.

▪ Contact: staff (direct or anonymous), CSE undergraduate
advising, UW Office of the Ombud

24

CSE351, Winter 2018L01: Introduction, Binary

Peer Instruction

❖ Increase real-time learning in lecture, test your
understanding, increase student interactions

▪ Lots of research supports its effectiveness

❖ Multiple choice question at end of lecture “segment”

▪ 1 minute to decide on your own

▪ 2-4 minutes in pairs to reach consensus

▪ Learn through discussion

❖ In-person voting during lecture

▪ May switch to PollEverywhere if the in-person thing doesn’t
work well

25

CSE351, Winter 2018L01: Introduction, Binary

Some fun topics that we will touch on

❖ Which of the following seems the most interesting to
you? (show of hands)

a) What is a GFLOP and why is it used in computer benchmarks?

b) How and why does running many programs for a long time
eat into your memory (RAM)?

c) What is stack overflow and how does it happen?

d) Why does your computer slow down when you run out of
disk space?

e) What was the flaw behind the original Internet worm, the
Heartbleed bug, and the Cloudbleed bug?

f) What is the meaning behind the different CPU specifications?
(e.g. # of cores, # and size of cache, supported memory types)

26

CSE351, Winter 2018L01: Introduction, Binary

Tips for Success in 351

❖ Attend all lectures and sections
▪ Avoid devices during lecture (i.e., listen, engage, and ask questions)

❖ Learn by doing
▪ Can answer many questions by writing small programs

❖ Visit Piazza often
▪ Ask questions and try to answer fellow students’ questions

❖ Go to office hours
▪ Even if you don’t have specific questions in mind

❖ Find a study and homework group

❖ Start assignments early

❖ Don’t be afraid to ask questions

27

CSE351, Winter 2018L01: Introduction, Binary

To-Do List

❖ Admin

▪ Explore/read website thoroughly: http://cs.uw.edu/351

▪ Check that you are enrolled in Piazza

▪ Get your machine set up for this class (VM or attu) as soon
as possible

❖ Assignments

▪ Pre-Course Survey due Friday (1/5)

▪ Lab 0 due Monday (1/8)

▪ HW 1 due Wednesday (1/10)

28

http://cs.uw.edu/351

CSE351, Winter 2018L01: Introduction, Binary

Other Details

❖ Consider taking CSE 391 Unix Tools, 1 credit

▪ Useful skills to know and relevant to this course

▪ Available to all CSE majors and anyone registered in this
CSE351

▪ If you are interested in taking this, attend the first lecture!!

29

CSE351, Winter 2018L01: Introduction, Binary

Lecture Outline

❖ Course Introduction

❖ Course Policies

❖ Binary

▪ Decimal, Binary, and Hexadecimal

▪ Base Conversion

▪ Binary Encoding

30

CSE351, Winter 2018L01: Introduction, Binary

Decimal Numbering System

❖ Ten symbols: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9

❖ Represent larger numbers as a sequence of digits

▪ Each digit is one of the available symbols

❖ Example: 7061 in decimal (base 10)

▪ 706110 = (7 × 103) + (0 × 102) + (6 × 101) + (1 × 100)

31

CSE351, Winter 2018L01: Introduction, Binary

Octal Numbering System

❖ Eight symbols: 0, 1, 2, 3, 4, 5, 6, 7

▪ Notice that we no longer use 8 or 9

❖ Base comparison:

▪ Base 10: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12…

▪ Base 8: 0, 1, 2, 3, 4, 5, 6, 7, 10, 11, 12, 13, 14…

❖ Example: What is 70618 in base 10?

▪ 70618 = (7 × 83) + (0 × 82) + (6 × 81) + (1 × 80) = 363310

32

CSE351, Winter 2018L01: Introduction, Binary

Peer Instruction Question

❖ What is 348 in base 10?

A. 3210

B. 3410

C. 710

D. 2810

E. 3510

❖ Think on your own for a minute, then discuss with
your neighbor(s)

33

CSE351, Winter 2018L01: Introduction, Binary

Binary and Hexadecimal

❖ Binary is base 2

▪ Symbols: 0, 1

▪ Convention: 210 = 102 = 0b10

❖ Example: What is 0b110 in base 10?

▪ 0b110 = 1102 = (1 × 22) + (1 × 21) + (0 × 20) = 610

❖ Hexadecimal (hex, for short) is base 16

▪ Symbols? 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, …?

▪ Convention: 1610 = 1016 = 0x10

❖ Example: What is 0xA5 in base 10?

▪ 0xA5 = A516 = (10 × 161) + (5 × 160) = 16510

34

9, A, B, C, D, E, F

CSE351, Winter 2018L01: Introduction, Binary

Peer Instruction Question

❖ Which of the following orderings is correct?

A. 0xC < 0b1010 < 11

B. 0xC < 11 < 0b1010

C. 11 < 0b1010 < 0xC

D. 0b1010 < 11 < 0xC

E. 0b1010 < 0xC < 11

❖ Think on your own for a minute, then discuss with
your neighbor(s)

35

CSE351, Winter 2018L01: Introduction, Binary

Converting to Base 10

❖ Can convert from any base to base 10

▪ 0b110 = 1102 = (1 × 22) + (1 × 21) + (0 × 20) = 610

▪ 0xA5 = A516 = (10 × 161) + (5 × 160) = 16510

❖ We learned to think in base 10, so this is fairly natural
for us

❖ Challenge: Convert into other bases (e.g. 2, 16)

36

CSE351, Winter 2018L01: Introduction, Binary

Challenge Question

❖ Convert 1310 into binary

❖ Hints:

▪ 23 = 8

▪ 22 = 4

▪ 21 = 2

▪ 20 = 1

❖ Think on your own for a minute, then discuss with
your neighbor(s)

37

1310 = ?
13 = 8 + 4 + 1
Binary: 0b 1 1 0 1
Dec: 8 4 1

CSE351, Winter 2018L01: Introduction, Binary

Converting from Decimal to Binary

❖ Given a decimal number N:

▪ List increasing powers of 2 from right to left until ≥ N

▪ Then from left to right, ask is that (power of 2) ≤ N?
• If YES, put a 1 below and subtract that power from N

• If NO, put a 0 below and keep going

❖ Example: 13 to binary

38

24=16 23=8 22=4 21=2 20=1

0 1 1 0 1

CSE351, Winter 2018L01: Introduction, Binary

Converting from Decimal to Base B

❖ Given a decimal number N:

▪ List increasing powers of B from right to left until ≥ N

▪ Then from left to right, ask is that (power of B) ≤ N?
• If YES, put how many of that power go into N and subtract from N

• If NO, put a 0 below and keep going

❖ Example: 165 to hex

39

162=256 161=16 160=1

0 A 5

CSE351, Winter 2018L01: Introduction, Binary

Converting Binary ↔ Hexadecimal

❖ Hex → Binary

▪ Substitute hex digits, then drop any
leading zeros

▪ Example: 0x2D to binary
• 0x2 is 0b0010, 0xD is 0b1101

• Drop two leading zeros, answer is 0b101101

❖ Binary → Hex

▪ Pad with leading zeros until multiple of
4, then substitute each group of 4

▪ Example: 0b101101
• Pad to 0b 0010 1101

• Substitute to get 0x2D
40

Base 10 Base 2 Base 16
0 0000 0
1 0001 1
2 0010 2
3 0011 3
4 0100 4
5 0101 5
6 0110 6
7 0111 7
8 1000 8
9 1001 9
10 1010 A
11 1011 B
12 1100 C
13 1101 D
14 1110 E
15 1111 F

CSE351, Winter 2018L01: Introduction, Binary

Binary → Hex Practice

❖ Convert 0b100110110101101

▪ How many digits?

▪ Pad:

▪ Substitute:

41

Base 10 Base 2 Base 16
0 0000 0
1 0001 1
2 0010 2
3 0011 3
4 0100 4
5 0101 5
6 0110 6
7 0111 7
8 1000 8
9 1001 9
10 1010 A
11 1011 B
12 1100 C
13 1101 D
14 1110 E
15 1111 F

15
0100 1101 1010 1101

0x4DAD

CSE351, Winter 2018L01: Introduction, Binary

Base Comparison

❖ Why does all of this matter?

▪ Humans think about numbers in base
10, but computers “think” about
numbers in base 2

▪ Binary encoding is what allows
computers to do all of the amazing
things that they do!

❖ You should have this table
memorized by the end of the class

▪ Might as well start now!

42

Base 10 Base 2 Base 16
0 0000 0
1 0001 1
2 0010 2
3 0011 3
4 0100 4
5 0101 5
6 0110 6
7 0111 7
8 1000 8
9 1001 9
10 1010 A
11 1011 B
12 1100 C
13 1101 D
14 1110 E
15 1111 F

CSE351, Winter 2018L01: Introduction, Binary

Numerical Encoding

❖ AMAZING FACT: You can represent anything
countable using numbers!

▪ Need to agree on an encoding

▪ Kind of like learning a new language

❖ Examples:

▪ Decimal Integers: 0→0b0, 1→0b1, 2→0b10, etc.

▪ English Letters: CSE→0x435345, yay→0x796179

▪ Emoticons: 😃 0x0, 😞 0x1, 😎 0x2, 😇 0x3, 😈 0x4, 🙋
0x5

43

CSE351, Winter 2018L01: Introduction, Binary

Binary Encoding

❖ With N binary digits, how many “things” can you
represent?

▪ Need N binary digits to represent 𝑛 things, where 2N ≥ 𝑛

▪ Example: 5 binary digits for alphabet because 25 = 32 > 26

❖ A binary digit is known as a bit

❖ A group of 4 bits (1 hex digit) is called a nibble

❖ A group of 8 bits (2 hex digits) is called a byte

▪ 1 bit → 2 things, 1 nibble → 16 things, 1 byte → 256 things

44

CSE351, Winter 2018L01: Introduction, Binary

So What’s It Mean?

❖ A sequence of bits can have many meanings!

❖ Consider the hex sequence 0x4E6F21

▪ Common interpretations include:
• The decimal number 5140257

• The characters “No!”

• The background color of this slide

• The real number 7.203034 × 10-39

❖ It is up to the program/programmer to decide how to
interpret the sequence of bits

45

CSE351, Winter 2018L01: Introduction, Binary

Binary Encoding – Colors

❖ RGB – Red, Green, Blue

▪ Additive color model (light): byte (8 bits) for each color

▪ Commonly seen in hex (in HTML, photo editing, etc.)

▪ Examples: Blue→0x0000FF, Gold→0xFFD700,
White→0xFFFFFF, Deep Pink→0xFF1493

46

CSE351, Winter 2018L01: Introduction, Binary

Binary Encoding – Characters/Text

❖ ASCII Encoding (www.asciitable.com)

▪ American Standard Code for Information Interchange

47

http://www.asciitable.com/

CSE351, Winter 2018L01: Introduction, Binary

Binary Encoding – Files and Programs

❖ At the lowest level, all digital data is stored as bits!

❖ Layers of abstraction keep everything comprehensible

▪ Data/files are groups of bits interpreted by program

▪ Program is actually groups of bits being interpreted by your
CPU

❖ Computer Memory Demo (if time)
▪ From vim: %!xxd

▪ From emacs: M-x hexl-mode

48

CSE351, Winter 2018L01: Introduction, Binary

Summary

❖ Humans think about numbers in decimal; computers
think about numbers in binary

▪ Base conversion to go between them

▪ Hexadecimal is more human-readable than binary

❖ All information on a computer is binary

❖ Binary encoding can represent anything!

▪ Computer/program needs to know how to interpret the bits

49

