
SID: __________

7

Question F5: Caching [10 pts]

We have 16 KiB of RAM and two options for our cache. Both are two-way set associative with 256 B
blocks, LRU replacement, and write-back policies. Cache A is size 1 KiB and Cache B is size 2 KiB.

(A) Calculate the TIO address breakdown for Cache B: [1.5 pt]

Tag bits Index bits Offset bits

4 2 8

14 address bits. logଶ 256 ൌ 8 offset bits. 2 KiB cache = 8 blocks. 2 blocks/set → 4 sets.

(B) The code snippet below accesses an integer array. Calculate the Miss Rate for Cache A if it
starts cold. [3 pt]

#define LEAP 4

#define ARRAY_SIZE 512

int nums[ARRAY_SIZE]; // &nums = 0x0100 (physical addr)

for (i = 0; i < ARRAY_SIZE; i+=LEAP)

 nums[i] = i*i;

1/16

Access pattern is a single write to nums[i]. Stride = LEAP = 4 ints = 16 bytes. 256/16 = 16
strides per block. First access is a compulsory miss and the next 15 are hits. Since we never
revisit indices, this pattern continues for all cache blocks. You can also verify that the offset of
&nums is 0x00, so we start at the beginning of a cache block.

(C) For each of the proposed (independent) changes, write MM for “higher miss rate”, NC for “no

change”, or MH for “higher hit rate” to indicate the effect on Cache A for the code above:[3.5 pt]

Direct-mapped _NC_ Increase block size _MH_

Double LEAP _MM_ Write-through policy _NC_

Since we never revisit blocks, associativity doesn’t matter. Larger block size means more
strides/block. Doubling LEAP means fewer strides/block. Write hit policy has no effect.

(D) Assume it takes 200 ns to get a block of data from main memory. Assume Cache A has a hit
time of 4 ns and a miss rate of 4% while Cache B, being larger, has a hit time of 6 ns. What is
the worst miss rate Cache B can have in order to perform as well as Cache A? [2 pt]

0.03 or 3%

AMATA = HTA + MRA ൈ MP = 4 + 0.04*200 = 12 ns.
AMATB = HTB + MRB ൈ MP ൑ 12 → 200 MRB ൑ 6 → MRB ൑ 0.03

Name:

4. Processes (12 points) In this problem, assume Linux.

(a) Can the same program be executing in more than one process simultaneously?

(b) Can a single process change what program it is executing?

(c) When the operating system performs a context switch, what information does NOT need to be
saved/maintained in order to resume the process being stopped later (circle all that apply):

• The page-table base register

• The value of the stack pointer

• The time of day (i.e., value of the clock)

• The contents of the TLB

• The process-id

• The values of the process’ global variables

(d) Give an example of an exception (asynchronous control flow) in which it makes sense to later
re-execute the instruction that caused the exception.

(e) Give an example of an exception (asynchronous control flow) in which it makes sense to abort the
process.

Solution:

(a) Yes (the question is ambiguous as to what “simultaneous” means. We clarified during the exam,
“Assume it is the case that multiple processes execute simultaneously. Then the question is
whether more than one of these processes can be executing the same program.” Under this
interpretation, only “yes” is plausibly correct.)

(b) Yes

(c) The time of day and the contents of the TLB

(d) Page fault for memory on disk (other answers possible; full credit given just for page-fault even
though that’s ambiguous)

(e) Division by zero (other answers possible)

8

Question F7: Processes [9 pts]

(A) The following function prints out four numbers. In the following blanks, list three possible
outcomes: [3 pt]

(1) _3, 5, 5, 1______

(2) _5, 3, 5, 1______

(3) _5, 5, 3, 1______

(B) For the following examples of exception causes, write “N” for intentional or “U” for unintentional
from the perspective of the user process. [2 pt]

System call __N__ Hardware failure __U__

Segmentation fault __U__ Mouse clicked __U__

Syscalls are part of code you are executing. The others are external to the process.

(C) Briefly define a zombie process. Name a process that can reap a zombie process. [2 pt]

Zombie process: A process that has ended/exited but is still consuming system resources.

Reaping process: The parent process or init/systemd (PID 1).

(D) In the following blanks, write “Y” for yes or “N” for no if the following need to be updated when
execv is run on a process. [2 pt]

Page table __Y__ PTBR __N__ Stack __Y__ Code __Y__

The process already has its own page table, so while we will need to invalidate PTEs from the old
process image, we don’t need to create another page table, so the PTBR can remain the same.
We replace/update the old process image’s virtual address space, including Stack and Code.

void concurrent(void) {
 int x = 3, status;
 if (fork()) {
 if (fork() == 0) {
 x += 2;
 printf("%d",x);
 } else {
 wait(&status);
 wait(&status);
 x -= 2;
 }
 }
 printf("%d",x);
 exit(0);
}

x=3

fork
fork

print
3

print print
5 5

print wait
wait

1

Simplified
Process
Diagram:

2

Question M1: Number Representation [8 pts]

(A) Take the 32-bit numeral 0xC0800000. Circle the number representation below that has the
negative value for this numeral. [2 pt]

Floating Point Sign & Magnitude Two’s Complement Unsigned
Unsigned: Can only represent positive numbers.
Floating Point: S = 1 and E = 100000012 → Exp = 2, so a small negative number.
Sign & Mag: Negative number with magnitude 100 0000 10…02.
Two’s: Negative number with magnitude 011 1111 10…02 (flip bits + 1).

(B) Let float f hold the value 220. What is the largest power of 2 that gets rounded off when

added to f? Answer in exponential form, not just the exponent. [2 pt]

23 bits in M, so need 24th power less than 220 to get rounded off. 2-4

Traffic lights display three basic colors: red (R), yellow (Y), and green (G), so we can use them to
encode base 3! We decide to use the encoding 0↔R, 1↔Y, 2↔G. For example, 5 = 1ൈ31+2ൈ30 would
be encoded as YG. Assume each traffic light can only display one color at a time.

(C) What is the unsigned decimal value of the traffic lights displaying RGYY? [2 pt]

0 ൈ 3ଷ ൅ 2 ൈ 3ଶ ൅ 1 ൈ 3ଵ ൅ 1 ൈ 3଴ ൌ 18 ൅ 3 ൅ 1 ൌ 22. 22

(D) If we have 9 bits of binary data that we want to store, how many traffic lights would it take to

store that same data? [2 pt]

9 bits represents 512 things. Powers of 3: 1, 3, 9, 27, 81, 243, 729. 6 traffic lights

 Question M2: Design Question [2 pts]

(A) The machine code for x86-64 instructions are variable length. Name one advantage and one
disadvantage of this design decision. [2 pt]

Advantage: Machine code/Code section of memory is more compact (don’t need to pad).
 No limit on number of instructions in ISA.

Disadvantage: Harder to tell/find where to read next instruction.
 Need more complex hardware to fetch and/or decode instructions.

 4 of 9

3. Virtual Memory (9 points)

Assume we have a virtual memory detailed as follows:

x 256 MiB Physical Address Space
x 4 GiB Virtual Address Space
x 1 KiB page size
x A TLB with 4 sets that is 8-way associative with LRU replacement

For the following questions it is fine to leave your answers as powers of 2.

a) How many bits will be used for:

 Page offset? _____10______

Virtual Page Number (VPN)? ____22_____ Physical Page Number (PPN)? ___18______

TLB index? _______2_________ TLB tag? _______20__________

b) How many entries in this page table?

222

c) We run the following code with an empty TLB. Calculate the TLB miss rate for data (ignore
instruction fetches). Assume i and sum are stored in registers and cool is page-aligned.

#define LEAP 8
int cool[512];
... // Some code that assigns values into the array cool
... // Now flush the TLB. Start counting TLB miss rate from here.
int sum;
for (int i = 0; i < 512; i += LEAP) {
 sum += cool[i];
}

TLB Miss Rate: (fine to leave you answer as a fraction) ____
𝟏
𝟑𝟐

Name: NetID:

2. Bu↵er Overflow (15 points)

The following code runs on a 64-bit x86 Linux machine. The figure below depicts the stack at point A before
the function gatekeeper() returns. The stack grows downwards towards lower addresses.

void get_secret(char*);
void unlock(void);
void backdoor(void);

void gatekeeper() {
char secret[8];
char buf[8];

fill_secret(secret);
gets(buf);

if (strcmp(buf, secret) == 0)
unlock();

A:
return 0;

}

0x7ffffffffffe0080 ...
Return Address

secret
0x7ffffffffffe0068 buf

You are joining a legion of elite hackers, and your final test before induction into the group is gaining access
to the CIA mainframe. gatekeeper() is a function on the mainframe that compares a password you provide
with the system’s password. If you try to brute force the password, you will be locked out, and your hacker
reputation will be tarnished forever.

Assume that fill secret() is a function that places the mainframe’s password into the secret bu↵er so
that it can be compared with the user-provided password stored in buf.

Recall that gets() is a libc function that reads characters from standard input until the newline (‘\n’)
character is encountered. The resulting characters (not including the newline) are stored in the bu↵er that’s
given to gets() as a parameter. If any characters are read, gets() appends a null-terminating character
(‘\0’) to the end of the string.

strcmp() is a function that returns 0 if two (null-terminated) strings are the same.

(a) Explain why the use of the gets() function introduces a security vulnerability in the program.

gets() introduces a security vulnerability because it does not have a limit on the number of characters
read. This can cause a bu↵er overflow, allowing a user to enter a malicious string that exceeds our
bu↵er.

(b) You think it may be possible to unlock the mainframe, even without the correct password. Provide
a hexadecimal representation of an attack string that causes the strcmp() call to return 0, such that
unlock() is then called. gatekeeper() should return normally, as to avoid raising any suspicion.

Essentially the bu↵ers secret and buf need to be the same. Thus, any identical null-terminated 8-byte
strings will work, as long as they don’t contain premature 00’s, for this counts as a null-terminator.
For example, 0xffffffffffffff00ffffffffffffff00 works.

4 of 17

Name: NetID:

(c) The function backdoor() is located at address 0x0000000000000351. Construct a string that can be
given to this program that will cause the function gatekeeper() to unconditionally transfer control
to the function backdoor(). Provide a hexadecimal representation of your attack string.

Fill up buf, fill up secret, replace return address with backdoor’s address. For example:

0x 1234567812345678 1234567812345678 5103000000000000

(d) How should the program be modified in order to eliminate the vulnerabilities the function gets()
introduces?

Various answers accepted here, such as using fgets() instead, which has the string length as a pa-
rameter.

(e) Describe two types of protection operating systems and compilers can provide against bu↵er overflow
attacks. Briefly explain how each protection mechanism works.

OS:

• memory protection

Compiler:

• stack canaries

• compile-time string length checks

• stack address randomization

5 of 17

Name: NetID:

4. Processes (10 points)

(a) After a context switch, the VPN to PPN mappings in the TLB from the previous running process no
longer apply. A simple solution to this problem is to ”shoot down” the TLB, by invalidating all the
entries in the TLB, but this can often cause ine�ciency if there is frequent context switching.

What additional information can be added to the TLB that can be utilized to reduce this ine�ciency
in the TLB on a context switch? Hint: consider how processes can be uniquely identified by the MMU.

Tagging TLB entries with the unique process ID

(b) Suppose you are in control of the CPU and operating system, and you realize that you have a process
A that requires a large uninterrupted chunk of CPU time to perform its important work. What would
you adjust to ensure that this can happen?

Any of these answers were accepted:

• Extend the context switch timer

• Avoid context switch

• Increase the priority of process A

• Ignore interrupts

One important consideration that a lot of answers did not take into account is that we are in control
of the CPU and not another user process, so solutions like using waitpid() or other system calls are
not correct.

(c) Consider an OS running a process A which incurs a timer interrupt at time t1. The OS context switches
to some other processes which do some work. Later, the OS context switches back to process A at
time t2. Note that process A was not run between t1 and t2.

Circle the items which are guaranteed to be the same at time t1 and t2.

Underlined items are guaranteed to be the same.

• Register %rbx: At time t1, the OS will save all of the register values for process A, including
%rbx. At time t2 when the OS context switches back, it restores the value of %rbx. Thus we are
guaranteed to have the same saved value.

• Process A’s Page Table: Between t1 and t2, another process could have evicted one of process
A’s pages that was in physical memory, thus altering its value.

• Instruction pointer: Similar to register %rbx, this register is also explicitly saved. One point
of clarification is that a context switch will only occur when a particular instruction is complete.
So, at t1 %rip will point to the next instruction that has not been executed. At t2 when the
OS context switches back, this value will still be the same so that it will in fact execute that exact
instruction.

• L1 Cache: The L1 cache can have been changed by other processes’ accesses to memory.

• Page fault handler code: The page fault handler code is part of the kernel (OS code) so this
will not change.

• Page Table Base Register: The PTBR contains the location in physical memory of the page
table for the currently executing process, which will not change from t1 to t2, so this is guaranteed
to be the same.

7 of 17

Name: NetID:

(d) Consider the following C program, running on an x86-64 Linux machine. The program starts running
at function main. Assume that printf flushes immediately.

int main() {
int* x = (int*) malloc(sizeof(int));
*x = 1;
if (fork() == 0) {

spoon(x);
} else {

*x = 8 * *x;
printf("%d\n", *x);

}
}

void spoon(int* x) {
printf("%d\n", *x);
if (fork() == 0) {

*x = 2 * *x;
} else {

*x = 4 * *x;
}
printf("%d\n", *x);

}

Provide two possible outputs of running this code.

Output 1: Output 2:

The main sources of error were:

• Each process has its own copy of x, so the largest possible output is 8.

• The first printf in spoon will always print the 1 before the 2 or 4.

All possible outputs:

• 8 1 2 4

• 8 1 4 2

• 1 8 2 4

• 1 8 4 2

• 1 2 8 4

• 1 4 8 2

• 1 2 4 8

• 1 4 2 8

8 of 17

 UW NetID: _ _ _ _ _ _ _

5

Question 4: Procedures & The Stack [24 pts.]
Consider the following x86-64 assembly and C code for the recursive function rfun.

// Recursive function rfun
long rfun(char *s) {
 if (*s) {
 long temp = (long)*s;
 s++;
 return temp + rfun(s);
 }
 return 0;
}

// Main Function - program entry
int main(int argc, char **argv) {
 char *s = "CSE351";
 long r = rfun(s);
 printf("r: %ld\n", r);
}

00000000004005e6 <rfun>:
 4005e6: 0f b6 07 movzbl (%rdi),%eax
 4005e9: 84 c0 test %al,%al
 4005eb: 74 13 je 400600 <rfun+0x1a>
 4005ed: 53 push %rbx
 4005ee: 48 0f be d8 movsbq %al,%rbx
 4005f2: 48 83 c7 01 add $0x1,%rdi
 4005f6: e8 eb ff ff ff callq 4005e6 <rfun>
 4005fb: 48 01 d8 add %rbx,%rax
 4005fe: eb 06 jmp 400606 <rfun+0x20>
 400600: b8 00 00 00 00 mov $0x0,%eax
 400605: c3 retq
 400606: 5b pop %rbx
 400607: c3 retq

 UW NetID: _ _ _ _ _ _ _

6

(A) How much space (in bytes) does this function take up in our final executable? [2 pts.]

Count all bytes (middle column) or subtract address of first instruction (0x4005e6) from last
instruction (0x400607), then add 1 byte for the retq instruction.

(B) The compiler automatically creates labels it needs in assembly code. How many labels are used in
rfun (including the procedure itself)? [2 pts.]

The addresses 0x4005e6, 0x400600 (Base Case), 0x400606 (Exit)

(C) In terms of the C function, what value is being saved on the stack? [2 pts.]

The movsbq instruction at 0x4005ee puts *s into %rbx, which is pushed onto the stack by the pushq
instruction at 0x4005ed.

(D) What is the return address to rfun that gets stored on the stack during the recursive calls (in hex)?
[2 pts.]

(E) Assume main calls rfun with char *s = “CSE351” and then prints the result using the printf
function, as shown in the C code above. Assume printf does not call any other procedure. Starting
with (and including) main, how many total stack frames are created, and what is the maximum depth
of the stack? [2 pts.]

Total Frames: 8 Max Depth: 7

main -> rfun(s) -> rfun(s+1) -> rfun(s+2) -> rfun(s+3) -> rfun(s+4) -> rfun(s+5)
 -> printf()

The recursive call to rfun(s+6), which handles the null-terminator in the string does not
create a stack frame since we consider the return address pushed to the stack during a
procedure call to be part of the caller’s stack frame. When handling the null character, the
byte is discovered to be null and the je instruction at 0x4005eb is taken, transferring
control to the mov instruction at 0x400600, which stores 0 in %rax and returns. Thus, the base
case of the recursive function does not create a stack frame.

34 Bytes

3

*s

0x4005fb

 UW NetID: _ _ _ _ _ _ _

7

(F) Assume main calls rfun with char *s = “CSE351”, as shown in the C code. After main calls
rfun, we find that the return address to main is stored on the stack at address 0x7fffffffdb38. On
the first call to rfun, the register %rdi holds the address 0x4006d0, which is the address of the input
string “CSE351” (i.e. char *s == 0x4006d0). Assume we stop execution prior to executing the
movsbq instruction (address 0x4005ee) during the fourth call to rfun. [14 pts.]

For each address in the stack diagram below, fill in both the value and a description of the entry.

The value field should be a hex value, an expression involving the C code listed above (e.g., a
variable name such as s or r, or an expression involving one of these), a literal value (integer
constant, a string, a character, etc.), “unknown” if the value cannot be determined, or “unused” if
the location is unused.

The description field should be one of the following: “Return address”, “Saved %reg” (where reg is
the name of a register), a short and descriptive comment, “unused” if the location is unused, or
“unknown” if the value is unknown.

Memory Address Value Description

0x7fffffffdb48 unknown %rsp when main is entered

0x7fffffffdb38 0x400616 Return address to main

0x7fffffffdb30 unknown original %rbx

0x7fffffffdb28 0x4005fb Return address

0x7fffffffdb20 *s, “C”, 0x43 Saved %rbx

0x7fffffffdb18 0x4005fb Return address

0x7fffffffdb10 *s, *(s+1), “S”, 0x53 Saved %rbx

0x7fffffffdb08 0x4005fb Return address

0x7fffffffdb00 *s, *(s+2), “E”, 0x45 Saved %rbx

 UW NetID: _ _ _ _ _ _ _

9

CSE 351 Reference Sheet (Midterm)
Binary Decimal Hex
0000 0 0
0001 1 1
0010 2 2
0011 3 3
0100 4 4
0101 5 5
0110 6 6
0111 7 7
1000 8 8
1001 9 9
1010 10 A
1011 11 B
1100 12 C
1101 13 D
1110 14 E
1111 15 F

Assembly Instructions
mov a, b Copy from a to b.
movs a, b Copy from a to b with sign extension. Needs two width specifiers.
movz a, b Copy from a to b with zero extension. Needs two width specifiers.
leaq a, b Compute address and store in b.

Note: the scaling parameter of memory operands can only be 1, 2, 4, or 8.
push src Push src onto the stack and decrement stack pointer.
pop dst Pop from the stack into dst and increment stack pointer.
call <func> Push return address onto stack and jump to a procedure.
ret Pop return address and jump there.
add a, b Add a to b and store in b (and sets flags).
sub a, b Subtract a from b (compute b-a) and store in b (and sets flags).
imul a, b Multiply a and b and store in b (and sets flags).
and a, b Bitwise AND of a and b, store in b (and sets flags).
sar a, b Shift value of b right (arithmetic) by a bits, store in b (and sets flags).
shr a, b Shift value of b right (logical) by a bits, store in b (and sets flags).
shl a, b Shift value of b left by a bits, store in b (and sets flags).
cmp a, b Compare b with a (compute b-a and set condition codes based on result).
test a, b Bitwise AND of a and b and set condition codes based on result.
jmp <label> Unconditional jump to address.
j* <label> Conditional jump based on condition codes (more on next page).
set* a Set byte based on condition codes.

20 21 22 23 24 25 26 27 28 29 210
1 2 4 8 16 32 64 128 256 512 1024

 UW NetID: _ _ _ _ _ _ _

10

Conditionals
Instruction Condition Codes (op) s, d test a, b cmp a, b

je “Equal” ZF d (op) s == 0 b & a == 0 b == a

jne “Not equal” ~ZF d (op) s != 0 b & a != 0 b != a

js “Sign” (negative) SF d (op) s < 0 b & a < 0 b-a < 0

jns (non-negative) ~SF d (op) s >= 0 b & a >= 0 b-a >= 0

jg “Greater” ~(SF^OF) & ~ZF d (op) s > 0 b & a > 0 b > a

jge “Greater or equal” ~(SF^OF) d (op) s >= 0 b & a >= 0 b >= a

jl “Less” (SF^OF) d (op) s < 0 b & a < 0 b < a

jle “Less or equal” (SF^OF) | ZF d (op) s <= 0 b & a <= 0 b <= a

ja “Above” (unsigned >) ~CF & ~ZF d (op) s > 0U b & a < 0U b > a

jb “Below” (unsigned <) CF d (op) s < 0U b & a > 0U b < a

Registers
 Name of “virtual” register

Name Convention Lowest
4 bytes

Lowest
2 bytes

Lowest
byte

%rax Return value – Caller saved %eax %ax %al

%rbx Callee saved %ebx %bx %bl

%rcx Argument #4 – Caller saved %ecx %cx %cl

%rdx Argument #3 – Caller saved %edx %dx %dl

%rsi Argument #2 – Caller saved %esi %si %sil

%rdi Argument #1 – Caller saved %edi %di %dil

%rsp Stack Pointer %esp %sp %spl

%rbp Callee saved %ebp %bp %bpl

%r8 Argument #5 – Caller saved %r8d %r8w %r8b

%r9 Argument #6 – Caller saved %r9d %r9w %r9b

%r10 Caller saved %r10d %r10w %r10b

%r11 Caller saved %r11d %r11w %r11b

%r12 Callee saved %r12d %r12w %r12b

%r13 Callee saved %r13d %r13w %r13b

%r14 Callee saved %r14d %r14w %r14b

%r15 Callee saved %r15d %r15w %r15b

Sizes

C type
x86-64
suffix

Size
(bytes)

char b 1

short w 2

int l 4

long q 8

