Question F5: Caching [10 pts]

We have 16 KiB of RAM and two options for our cache. Both are two-way set associative with 256 B
blocks, LRU replacement, and write-back policies. Cache A is size 1 KiB and Cache B is size 2 KiB.

(A) Calculate the TIO address breakdown for Cache B: [1.5 pt]

Tag bits Index bits | Offset bits

(B) The code snippet below accesses an integer array. Calculate the Miss Rate for Cache A if it
starts cold. [3 pt]

#define LEAP 4

#define ARRAY SIZE 512

int nums[ARRAY SIZE]; // &nums = 0x0100 (physical addr)
for (1 = 0; 1 < ARRAY SIZE; i+=LEAP)

nums[1i] = 1i*1i;

(C) For each of the proposed (independent) changes, write MM for “higher miss rate”, NC for “no
change”, or MH for “higher hit rate” to indicate the effect on Cache A for the code above:|3.5 pt]

Increase block size

Direct-mapped

Double LEAP Write-through policy

(D) Assume it takes 200 ns to get a block of data from main memory. Assume Cache A has a hit
time of 4 ns and a miss rate of 4% while Cache B, being larger, has a hit time of 6 ns. What is

the worst miss rate Cache B can have in order to perform as well as Cache A? |2 pt|

Name:

4. Processes (12 points) In this problem, assume Linux.

Can the same program be executing in more than one process simultaneously?
Can a single process change what program it is executing?

When the operating system performs a context switch, what information does NOT need to be
saved/maintained in order to resume the process being stopped later (circle all that apply):

The page-table base register

The value of the stack pointer

The time of day (i.e., value of the clock)
The contents of the TLB

The process-id

e The values of the process’ global variables

Give an example of an exception (asynchronous control flow) in which it makes sense to later
re-execute the instruction that caused the exception.

Give an example of an exception (asynchronous control flow) in which it makes sense to abort the
process.

Question F7: Processes [9 pts]

(A) The following function prints out four numbers. In the following blanks, list three possible

outcomes: |3 pt|

void concurrent (void) {

int x = 3, status; (1)
if (fork()) {
if (fork() == 0) { (2)
X +t= 2;
printf ("%d", x);
} else { (3)

wailt (&status) ;
wailt (&status) ;
X —-= 2;

}
printf ("%d", x);
exit (0) ;

(B) For the following examples of exception causes, write “N” for intentional or “U” for unintentional

from the perspective of the user process. |2 pt]
System call Hardware failure

Segmentation fault Mouse clicked

(C) Briefly define a zombie process. Name a process that can reap a zombie process. |2 pt]

Zombie process:

Reaping process:

(D) In the following blanks, write “Y” for yes or “N” for no if the following need to be updated when

execv is run on a process. |2 pt]

Page table PTBR — Stack — Code

Question M1: Number Representation [8 pts|

(A) Take the 32-bit numeral 0xC0800000. Circle the number representation below that has the

most negative value for this numeral. [2 pt]

Floating Point Sign & Magnitude Two’s Complement Unsigned

20

(B) Let float £ hold the value 2°°. What is the largest power of 2 that gets rounded off when

added to £7 Answer in exponential form, not just the exponent. [2 pt]

Traffic lights display three basic colors: red (R), yellow (Y), and green (G), so we can use them to
encode base 3! We decide to use the encoding 0oR, 1Y, 26G. For example, 5 = 1x3"+2x3" would

be encoded as YG. Assume each traffic light can only display one color at a time.

(C) What is the unsigned decimal value of the traffic lights displaying RGYY? [2 pt]

(D) If we have 9 bits of binary data that we want to store, how many traffic lights would it take to
store that same data? [2 pt]

Question M2: Design Question |[2 pts]

(A) The machine code for x86-64 instructions are variable length. Name one advantage and one

disadvantage of this design decision. |2 pt]

Advantage:

Disadvantage:

4 0of 9

3. Virtual Memory (9 points)

Assume we have a virtual memory detailed as follows:

256 MiB Physical Address Space

4 GiB Virtual Address Space

1 KiB page size

e A TLB with 4 sets that is 8-way associative with LRU replacement

For the following questions it is fine to leave your answers as powers of 2.

a) How many bits will be used for:

Page offset?
Virtual Page Number (VPN)? Physical Page Number (PPN)?
TLB index? TLB tag?

b) How many entries in this page table?

¢) We run the following code with an empty TLB. Calculate the TLB miss rate for data (ignore
instruction fetches). Assume i and sum are stored in registers and cool is page-aligned.

#define LEAP 8
int cool[512];
// Some code that assigns values into the array cool
// Now flush the TLB. Start counting TLB miss rate from here.
int sum;
for (int i = 0; i < 512; i += LEAP) {
sum += cool[i];

}

TLB Miss Rate: (fine to leave you answer as a fraction)

Name: NetID:

2. Buffer Overflow (15 points)

The following code runs on a 64-bit x86 Linux machine. The figure below depicts the stack at point A before
the function gatekeeper () returns. The stack grows downwards towards lower addresses.

void get_secret(char*);
void unlock(void);

void backdoor(void); OxTEE£E££E£££00080

Return Address
secret

char secret[8]; Ox7fffffFFfffe0068 buf
char buf[8];

void gatekeeper() {

fill_secret(secret);
gets(buf);

if (strcmp(buf, secret) == 0)
unlock();

return 0O;

You are joining a legion of elite hackers, and your final test before induction into the group is gaining access
to the CIA mainframe. gatekeeper () is a function on the mainframe that compares a password you provide
with the system’s password. If you try to brute force the password, you will be locked out, and your hacker
reputation will be tarnished forever.

Assume that £ill secret () is a function that places the mainframe’s password into the secret buffer so
that it can be compared with the user-provided password stored in buf.

Recall that gets() is a libc function that reads characters from standard input until the newline (‘\n’)
character is encountered. The resulting characters (not including the newline) are stored in the buffer that’s
given to gets() as a parameter. If any characters are read, gets() appends a null-terminating character
(\0’) to the end of the string.

stremp() is a function that returns 0 if two (null-terminated) strings are the same.

(a) Explain why the use of the gets() function introduces a security vulnerability in the program.

(b) You think it may be possible to unlock the mainframe, even without the correct password. Provide
a hexadecimal representation of an attack string that causes the strecmp() call to return 0, such that
unlock() is then called. gatekeeper () should return normally, as to avoid raising any suspicion.

4 of 18

Name: NetID:

(¢) The function backdoor () is located at address 0x0000000000000351. Construct a string that can be
given to this program that will cause the function gatekeeper() to unconditionally transfer control
to the function backdoor (). Provide a hexadecimal representation of your attack string.

(d) How should the program be modified in order to eliminate the vulnerabilities the function gets()
introduces?

(e) Describe two types of protection operating systems and compilers can provide against buffer overflow
attacks. Briefly explain how each protection mechanism works.

5 of 18

Name: NetID:

4. Processes (10 points)

(a) After a context switch, the VPN to PPN mappings in the TLB from the previous running process no
longer apply. A simple solution to this problem is to ”shoot down” the TLB, by invalidating all the
entries in the TLB, but this can often cause inefficiency if there is frequent context switching.

What additional information can be added to the TLB that can be utilized to reduce this inefficiency
in the TLB on a context switch? Hint: consider how processes can be uniquely identified by the MMU.

(b) Suppose you are in control of the CPU and operating system, and you realize that you have a process
A that requires a large uninterrupted chunk of CPU time to perform its important work. What would
you adjust to ensure that this can happen?

(¢) Consider an OS running a process A which incurs a timer interrupt at time ¢;. The OS context switches
to some other processes which do some work. Later, the OS context switches back to process A at
time t5. Note that process A was not run between t; and to.

Circle the items which are guaranteed to be the same at time ¢; and t».

Register %rbx Process A’s Page Table Instruction Pointer

L1 Cache Page fault handler code Page Table Base Register

7 of 18

Name:

(d) Consider the following C program, running on an x86-64 Linux machine
at function main. Assume that printf flushes immediately.

int main() {

int* x = (int*) malloc(sizeof(int));
*x = 1;
if (fork() == 0) {
spoon(x) ;
} else {

*x = 8 * *x;
printf ("%d\n", *x);

}

void spoon(int* x) {
printf ("%d\n", *x);
if (fork() == 0) {
*X = 2 x *Xx;
} else {
*x = 4 % *x;
}
printf ("%d\n", *x);

Provide two possible outputs of running this code.

Output 1: Output 2:

8 of 18

NetlID:

. The program starts running

UW NetID:

Question 4: Procedures & The Stack [24 pts.]

Consider the following x86-64 assembly and C code for the recursive function rfun.

// Recursive function rfun
long rfun(char *s) {

if (*s) {
long temp = (long)*s;
S++;
return temp + rfun(s);
}
return 0;

}

// Main Function - program entry
int main(int argc, char **argv) {
char *s = "CSE351";
long r = rfun(s);
printf("r: %1d\n", r);

}

00000000004005e6 <rfun>:
4005e6: Of b6 07 movzbl (%rdi),%eax
4005e9: 84 cO test %al,%al
4005eb: 74 13 je 400600 <rfun+0xla>
4005ed: 53 push %rbx
4005ee: 48 of be d8 movsbq %al,%rbx
4005f2: 48 83 c7 01 add $0x1,%rdi
4005f6: e8 eb ff ff ff callqg 4005e6 <rfun>
4005fb: 48 01 d8 add %rbx,%rax
4005fe: eb 06 jmp 400606 <rfun+0x20>
400600: b8 00 00 00 00 mov $0x0, %eax
400605: c3 retqg
400606: 5b pop %rbx
400607: c3 retq

UW NetID:

(A) How much space (in bytes) does this function take up in our final executable? [2 pts.]

(B) The compiler automatically creates labels it needs in assembly code. How many labels are used in
rfun (including the procedure itself)? [2 pts.]

(C) In terms of the C function, what value is being saved on the stack? [2 pts.]

(D) What is the return address to rfun that gets stored on the stack during the recursive calls (in hex)?
[2 pts.]

(E) Assume main calls rfun with char *s = “CSE351” and then prints the result using the printf
function, as shown in the C code above. Assume printf does not call any other procedure. Starting
with (and including) main, how many total stack frames are created, and what is the maximum depth
of the stack? [2 pts.]

Total Frames: Max Depth:

UW NetID:

(F) Assume main calls rfun with char *s = “CSE351”, as shown in the C code. After main calls
rfun, we find that the return address to main is stored on the stack at address Ox7fffffffdb38. On
the first call to rfun, the register %rdi holds the address ©x4006d0, which is the address of the input

string “CSE351” (i.e. char *s

0x4006d0). Assume we stop execution prior to executing the

movsbq instruction (address @x4005ee) during the fourth call to rfun. [14 pts.]

For each address in the stack diagram below, fill in both the value and a description of the entry.

The value field should be a hex value, an expression involving the C code listed above (e.g., a
variable name such as s or r, or an expression involving one of these), a literal value (integer
constant, a string, a character, etc.), “‘unknown” if the value cannot be determined, or “unused” if

the location is unused.

The description field should be one of the following: “Return address”, “Saved %reg” (where reg is
the name of a register), a short and descriptive comment, “unused” if the location is unused, or

“unknown” if the value is unknown.

Memory Address

Value

Description

Ox7FFFFFFdbas

unknown

%rsp when main is entered

Ox7fffffffdb38

0x400616

Return address to main

Ox7fffffffdb30

unknown

original %rbx

Ox7fffffffdb28

ox7fffffffdb20o

Ox7fffffffdbls8

Ox7fffffffdblo

ox7fffffffdbos8

ox7fffffffdboo

UNIVERSITY of WASHINGTON L21: Virtual Memory I CSE351, Winter 2018

Summary of Address Translation Symbols

+ Basic Parameters
= N = 2™ Number of addresses in virtual address space
= M = 2™ Number of addresses in physical address space
= P =2P Page size (bytes)

> Components of the virtual address (VA)
= VPO Virtual page offset
= VPN Virtual page number
= TLBI TLB index
= TLBT TLB tag

» Components of the physical address (PA)
= PPO Physical page offset (same as VPO)
= PPN Physical page number

18

UNIVERSITY of WASHINGTON L21: Virtual Memory II CSE351, Winter 2018

Simple Memory System Example (small)

<« Addressing
® 14-bit virtual addresses
= 12-bit physical address
= Page size = 64 bytes

13 12 11 10 9 8 7 6 5 4 3 2 1 0

N S

VPN VPO
Virtual Page Number Virtual Page Offset

PPN PPO
Physical Page Number Physical Page Offset

19

11/20/2017

UNIVERSITY of WASHINGTON L21: Virtual Memory I CSE351, Winter 2018

Simple Memory System: Page Table

« Only showing first 16 entries (out of)
= Note: showing 2 hex digits for PPN even though only 6 bits
= Note: other management bits not shown, but part of PTE

VPN | PPN | Valid VPN | PPN | Valid
0 28 1 8 13 1
1 - 0 9 17 1
2 33 1 A 09 1
3 02 1 B - 0
4 - 0 C - 0
5 16 1 D 2D 1
6 - 0 E - 0
7 - 0 F 0D 1

20

UNIVERSITY of WASHINGTON L21: Virtual Memory |1 CSE351, Winter 2018

Simple Memory System: TLB

« 16 entries total
Why does the

+ 4-way set associative TLB ignore the

page offset?

TLB tag TLB index
13 12 11 10 9 8 7 6 5 4 3 2 1 0

N O

«——virtual page number —————»«——virtual page offset ——

Set | Tag | PPN | Valid| Tag | PPN | Valid| Tag | PPN | Valid| Tag | PPN | Valid
0 03 - 0 09 | OD 1 00 - 0 07 02 1
1 03 | 2D 1 02 - 0 04 - 0 0A - 0
2 02 - 0 08 - 0 06 - 0 03 - 0
3 07 - 0 03 | OD 1 OA | 34 1 02 - 0

21

11/20/2017

11/20/2017

UNIVERSITY of WASHINGTON L21: Virtual Memory I CSE351, Winter 2018

Note: Itis just

Simple Memory System: cache coincidence that the

PPN is the same width

as the cache Tag

« Direct-mapped with K=4B, C/K=16
<« Physically addressed

+—— cache tag —————»<«—— cache index —»cache offset

11 10 9 8 7 6 5 4 3 2 1 0

N N N N o

<«— physical page number —<+— physical page offset —

Index| Tag | Valid | BO B1 B2 B3 | Index| Tag | Valid | BO B1 B2 B3
0 19 1 99 11 23 11 8 24 1 3A 00 51 89
1 15 0 - - - - 9 2D 0 - - - -
2 1B 1 00 02 04 08 A 2D 1 93 15 DA 3B
3 36 0 - - - - B 0B 0 - - - -
4 32 1 43 6D 8F 09 C 12 0 - - - -
5 0D 1 36 72 FO 1D D 16 1 04 96 34 15
6 31 0 - - - - E 13 1 83 77 1B D3
7 16 1 11 Cc2 DF 03 F 14 0 - - - -

22

UNIVERSITY of WASHINGTON L21: Virtual Memory |1 CSE351, Winter 2018
Current State of Memory System
) Page table (partial):

TLB: : : : : : : : : VPN|PPN| V | VPN|PPN| V
Set |Tag |PPN| V |Tag |PPN| V |Tag|PPN| V |[Tag|PPN| V 0|28 1 8 |13 | 1
0fo3i -1o0ofogiopi1fo0i -10]o07i0271 1| -Jo| 9171
1 [o3i2pi1]02i - 10041 -10]foAal -—10 2 (33|]1| A|09]1
2 |o2i - 1008 -10fo61 -10]031 -0 202; E ‘g
3|07 —10]0310D1 1 |0A134 111|021 -10 5 611 o 2011

6| -0 E| -0
7 -To Flob|1

Cache:

Index | Tag v BO B1 B2 B3 | Index| Tag "4 BO B1 B2 B3
0 19 1 99 | 11 | 23 | 11 8 | 24 1 | 3a | oo | 51| 89
1 15 0 - - - - 9 [2p] o - - - -
2 1B 1 | oo | 02 | o4 | 08 Al o] 1 93 | 15 | pA | 3B
3 36 | 0 - - - - B [o] o - - - -
a | 32 1 | 43 | 6D | 8F | 09 c 12 | o - - - -
5 [op | 1 36 | 72 | FO | 1D p | 16 1 04 | 96 | 34 | 15
6 | 31 0 - - - - E 13 1 83 | 77 | 18 | D3
7 16 1 11 | ¢2 | bF | 03 F 14 | 0 - - - -

23

UNIVERSITY of WASHINGTON L21: Virtual Memory I CSE351, Winter 2018

Note: Itis just

Memory Request Example #1 coincidence that the

PPN is the same width

as the cache Tag

« Virtual Address: 0x03D4

TLBT «— TLBI—
13 12 11 10 9 8 7 6 5 4 3 2 1 0

[ofJofoJofaJafafafofafofafo]o]
VPN VPO

VPN TLBT TLBI TLBHit? __ PageFault? __ PPN

« Physical Address:

PPN PPO

CcT Cl co Cache Hit? ___ Data (byte)

24

UNIVERSITY of WASHINGTON L21: Virtual Memory |1 CSE351, Winter 2018

Note: Itis just

Memory Request Example #2 coincidence that the

PPN is the same width

as the cache Tag

« Virtual Address: 0x038F

TLBT «—TLBl —
13 12 11 10 9 8 7 6 5 4 3 2 1 0

[ofofofofs[a]a]oJofJofafafa[1]
VPN VPO

VPN TLBT TLBI TLBHit? ___ PageFault? ___ PPN

« Physical Address:

PPN PPO

CcT cl co Cache Hit? ___ Data (byte)

25

11/20/2017

UNIVERSITY of WASHINGTON L21: Virtual Memory I CSE351, Winter 2018

Note: Itis just

Memory Request Example #3 coincidence that the

PPN is the same width

as the cache Tag

« Virtual Address: 0x0020

TLBT «— TLBI—
13 12 11 10 9 8 7 6 5 4 3 2 1 0

[oJofoJofJoJofoJof1i]ofofofo]o]
VPN VPO

VPN TLBT TLBI TLBHit? __ PageFault? __ PPN

« Physical Address:

PPN PPO

CcT Cl co Cache Hit? ___ Data (byte)

26

UNIVERSITY of WASHINGTON L21: Virtual Memory |1 CSE351, Winter 2018

Note: Itis just

Memory Request Example #4 coincidence that the

PPN is the same width

as the cache Tag

« Virtual Address: 0x036B

TLBT «—TLBl —
13 12 11 10 9 8 7 6 5 4 3 2 1 0

[ofofofofs[aJofaJafJofafofa[1]
VPN VPO

VPN TLBT TLBI TLBHit? ___ PageFault? ___ PPN

« Physical Address:

PPN PPO

CcT cl co Cache Hit? ___ Data (byte)

27

11/20/2017

