CSE 351 Section 4 - C and x86-64 Assembly

Hi there! Welcome back to section, we're happy that you're here ©
What is Assembly?

Assembly language is a human-readable representation of machine code instructions (generally a one-to-one
correspondence). Assembly is machine-specific because the computer architecture and hardware are designed to
execute a particular machine code instruction set.

x86-64

x86-64 is the primary 64-bit instruction set architecture (ISA) used by modern personal computers. It was
developed by Intel and AMD and its 32-bit predecessor is called IA32. x86-64 is designed for complex instruction
set computing (CISC), generally meaning it contains a larger set of more versatile and more complex instructions.

For this course, we will utilize only a small subset of x86-64’s instruction set and omit floating point instructions.

x86-64 Instructions

The subset of x86-64 instructions that we will use in this course take either one or two operands, usually
operation operandl, operand2. Operands can be:

e Immediate: constantinteger data (eg $0x400, $-533) or an address/label (eg Loop, main)
e Register: use the data stored in one of the 16 general purpose registers or subsets (eg $rax, $edi)
e Memory: use the data at the memory address specified by the addressing mode D (Rb, Ri, S)

“__n

The operation determines the effect of the operands on the processor state and has a suffix (“b” for byte, “w” for

«_n

word, “1” for long, “g” for quad word) that determines the bit width of the operation. Sometimes the operation
size can be inferred from the operands, so the suffix is omitted for brevity.
Control Flow and Condition Codes

Internally, condition codes (Carry, Zero, Sign, Overflow) are set based on the result of the previous operation. The
j* and set* families of instructions use the values of these “flags” to determine their effects. See the table
provided on your reference sheet for equivalent conditionals.

An indirect jump is specified by adding an asterisk (*) in front of a memory operand and causes your program
counter to load the address stored at the computed address.

Procedure Basics

The instructions push, pop, call, and ret move the stack pointer ($rsp) automatically.

%$rax is used for the return value and the first six arguments go in $rdi, $rsi, $rdx, $rcx, $r8, $r9 (“Diane’s
Silk Dress Cost $89”).

Exercises:
1. [CSE351 Aul4 Midterm] What does the following code return?
movl (%rdi), %eax # $rdi -> x; r = *x
leal (%eax, %eax,?2), %eax # %rax -> r; r = (*x) * 3
addl %eax, %eax # r = (*x)*3 + (*x)*3
andl %esi, %eax # %rsi -> y; r = ((*x)*6) & y
subl %esi, %eax # r (((*x)*6) & V) - ¥

ret

(((*x) * 6) &y) - ¥

2.

[CSE351 Aul5 Midterm] Convert the following C function into x86-64 assembly code. You are not being
judged on the efficiency of your code - just the correctness.

long happy(long *x, long y, long z)

if (y > z)

return z + y;
else

return *x;

}

happy:
cmpg $rdx, %$rsi
jle .else
leaqg (%rdx, S%rsi), %rax
ret
.else:
movqg (%rdi), S%Srax
ret

{

Multiple other possibilities (e.g. switch ordering of if/else clauses, replace 1ea with mov/add instruction

pair).

Write an equivalent C function for the following x86 code:

mystery:

1 testl %edx, %edx
2 js .L3

3 cmpl $esi, %edx
4 jge .L3

5 movslg %edx, %rdx
6 movl (%rdi, $rdx,4), %eax
7 ret

.L3:

8 movl 50, %eax

9 ret

int mystery(int *x, int y, int z)
if (z >= 0 && z < vy)
return x[z];
else
return 0O;

Notes:

H= H FH H

{

Tedx
jump
%esi
jump

sign-

Srdi

is 3* argument (z)

to .L3 1if z<0

is 27 argument (y)

to .L3 if y>=z

extend 3*¢ argument (z)

is 1% argument (x), calc *(x + z*4)

return O

e Ifeither conditional is True, then we jump to the “else” clause, so in C we execute the “if” clause only
when the complement of both of them are True.
e Line 6 indicates that the return type is 4 bytes (int). Line 8 is ambiguous since it zeros out the

entire 8 bytes of $rax.

e Argument variable names are arbitrary. Based on usage, could perhaps have used x—ar, y—n,

z—k.

e First argument had to point to int based on scale factor in Line 6. Both int *xand int x[]

work.

4,

[Adapted from CSE351 Wil6 Midterm] Suppose before the assembly below is executed, the value of $rsp is
OxFEFFF8888.

0x00002f: pushqg $7

0x000031: pushg $5

0x000033: addg $2, 8 (%rsp)
0x000039: callqg someOtherFunction
0x00003e:

Immediately afterthe callq instruction executes:
a. Whatis the value of $rsp in hexadecimal?

The push and call instructions add to the stack (decrement $rsp). There are two pushqg and one
callgso $rsp has been decremented by 24 bytes. 24 = 0x18. 0xFFFF8888 - 0x18 = OxFFFF8870.

b. Fill in the contents of the stack from $rsp (your answer to part a) up to (but not including)
OxFFFF8888. Fill in the boxes below using hexadecimal. You may not need all rows.

Address Data
0xFFFF8888 <unknown>
O0xFFFF8880 0x9
OxFFFF8878 0x5
OxFFFF8870 0x3e

Notes:
e Originally 7 is pushed onto the stack first, but then later gets 2 added to it.
e The return address is the address of the instruction after callqg, which is 0x00003e in
this case.

SID: 1234567

Aul6 Midterm Q5 Solutions
Question 5: The Stack [12 pts|

The recursive factorial function fact () and its x86-64 disassembly is shown below:

int fact (int n) {
1f(n==0 || n==1)
return 1;

return n*fact (n-1);

000000000040052d <fact>:

40052d: 83 f£f 00 cmpl $0, %edi
400530: 74 05 je 400537 <fact+0xa>
400532: 83 ff 01 cmpl $1, %edi
400535: 75 07 jne 40053e <fact+0x11>

400537: b8 01 00 00 00 movl $1, %eax

40053c: eb 0d jmp 40054b <fact+0xle>
40053e: 57 pushg S%rdi
40053f: 83 ef 01 subl $1, %edi

400542: e8 e6 ff ff ff call 40052d <fact>

400547: 5f pPora Frdi
400548: O0f af c7 imull %edi, %eax
40054b: f£3 c3 rep ret

(A) Circle one: [1 pt] fact () is saving $rdi to the Stack as a // Callee

(B) How much space (in bytes) does this function take up in our final executable? [2 pt]

Count all bytes (middle columns) or subtract address of next

. . 32 B
instruction (0x40054d) from 0x40052d.

(C) Stack overflow is when the stack exceeds its limits (i.e. runs into the Heap). Provide an

argument to fact (n) here that will cause stack overflow. |2 pt|

Any negative int

We did mention in the lecture slides that the Stack has 8 MiB limit in x86-64, so since
16B per stack frame, credit for anything between 2'’ and TMax (231—1).

(D) If we use the main function shown below, answer the following for the execution of the
entire program: [4 pt]

void main () {
printf (“result = %d\n”, fact(3));

Total frames Maximum stack
created: 5 frame depth: 4

main — fact(3) — fact(2) — fact(1)

— printf

(E) In the situation described above where main () calls fact (3), we find that the word 0x2
is stored on the Stack at address 0x7fffdc7ba888. At what address on the Stack can
we find the return address to main()? |3 pt]

O0x7£fffdc7ba8al

Only $rdi (current n) and return address get pushed onto Stack during fact ().

Address Contents

<Rest of Stack>

0x7fffdc7ba8al Return addr to main ()
Ox7fffdc7ba898 Old $rdi (n=3)
0x7ff£fdc7ba890 Return addr to fact ()
Ox7fffdc7ba888 Old $rdi (n=2)

Ox7£ffdc7pba880 Return addr to fact ()

