CSE 351 Section 1 - Number Bases and Working in C [Solutions]

Hi there and welcome to section! $)^{-}$

Numerals

A numeral is a symbolic representation of a number. For the purposes of this class, we will define a numeral as a sequence of digits (symbols).

Number Bases

If we have an n-digit numeral $d_{n-1} d_{n-2} \ldots d_{0}$ in base b, then the value of that numeral is $\sum_{\boldsymbol{i}=\mathbf{0}}^{\boldsymbol{n}} \boldsymbol{d}_{\boldsymbol{i}} \boldsymbol{b}^{\boldsymbol{i}}$, which is just fancy notation to say that instead of a 10 's or 100 's place we have a b^{\prime} s or b^{2} 's place.

The most common bases we will use in this class are 2,10 , and 16 , which are called binary, decimal, and hexadecimal (or hex), respectively. In base b, each digit d_{i} can only be one of b fixed symbols ($0-1$ for binary, $0-9$ for decimal, etc.).

The table on the right shows the equivalent numerals for the numbers 0 through 15 in these three major number bases. We differentiate between these bases by using the prefix ‘ 0 b ’ for binary and ‘ 0 x ’ for hexadecimal.

Binary	Decimal	Hex
0000	0	0
0001	1	1
0010	2	2
0011	3	3
0100	4	4
0101	5	5
0110	6	6
0111	7	7
1000	8	8
1001	9	9
1010	10	A
1011	11	B
1100	12	C
1101	13	D
1110	14	E
1111	15	F

Exercises:

1. Complete the table below by converting the numbers into the other two common bases. You may leave the "Decimal" column unsimplified.

Binary	Decimal	Hexadecimal
0b10010011	$2^{7}+2^{4}+2^{1}+2^{0}=147$	0×93
0b10110	$1 \times 16^{1}+6 \times 16^{0}=22$	0x16
0b111111	63	0x3F
0b100100	$2^{5}+2^{2}=36$	0x24
Ob110000110000	$12 \times 16^{2}+3 \times 16^{1}=3120$	0xC30
0b0	0	0x0
Ob101110101101	$11 \times 16^{2}+10 \times 16^{1}+13 \times 16^{0}=2989$	$0 x B A D$
0b110110101	437	0x1B5

